【題目】如圖,在平面直角坐標(biāo)系中,直線y2x+6x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B的直線交x軸于點(diǎn)C,且ABBC

1)求直線BC的解析式;

2)點(diǎn)P為線段AB上一點(diǎn),點(diǎn)Q為線段BC延長(zhǎng)線上一點(diǎn),且APCQ,設(shè)點(diǎn)Q橫坐標(biāo)為m,求點(diǎn)P的坐標(biāo)(用含m的式子表示,不要求寫出自變量m的取值范圍);

3)在(2)的條件下,點(diǎn)My軸負(fù)半軸上,且MPMQ,若∠BQM45°,求直線PQ的解析式.

【答案】1y=﹣2x+6;(2)點(diǎn)Pm6,2m6);(3y=﹣x+

【解析】

1)先求出點(diǎn)A,點(diǎn)B坐標(biāo),由等腰三角形的性質(zhì)可求點(diǎn)C坐標(biāo),由待定系數(shù)法可求直線BC的解析式;

2)證明PGA≌△QHCAAS),則PGHQ2m6,故點(diǎn)P的縱坐標(biāo)為:2m6,而點(diǎn)P在直線AB上,即可求解;

3)由SSS可證APM≌△CQM,ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM45°,∠BAM=∠BCM,由AAS可證APE≌△MAO,可得AEOM,PEAO3,可求m的值,進(jìn)而可得點(diǎn)P,點(diǎn)Q的坐標(biāo),即可求直線PQ的解析式.

1)∵直線y2x+6x軸交于點(diǎn)A,與y軸交于點(diǎn)B,

∴點(diǎn)B(06),點(diǎn)A(﹣3,0),

AO3BO6,

ABBC,BOAC,

AOCO3

∴點(diǎn)C(3,0),

設(shè)直線BC解析式為:ykx+b,則,解得:,

∴直線BC解析式為:y=﹣2x+6

2)如圖1,過點(diǎn)PPGAC于點(diǎn)G,過點(diǎn)QHQAC于點(diǎn)H,

∵點(diǎn)Q橫坐標(biāo)為m,

∴點(diǎn)Q(m,﹣2m+6),

ABCB,

∴∠BAC=∠BCA=∠HCQ,

又∵∠PGA=∠QHC90°,APCQ

∴△PGA≌△QHCAAS),

PGHQ2m6

∴點(diǎn)P的縱坐標(biāo)為:2m6,

∵直線AB的表達(dá)式為:y2x+6

2m62x+6,解得:xm6,

∴點(diǎn)P(m62m6);

3)如圖2,連接AM,CM,過點(diǎn)PPEAC于點(diǎn)E,

ABBCBOAC,

BOAC的垂直平分線,

AMCM,且APCQ,PMMQ

∴△APM≌△CQMSSS

∴∠PAM=∠MCQ,∠BQM=∠APM45°,

AMCM,ABBC,BMBM,

∴△ABM≌△CBMSSS

∴∠BAM=∠BCM

∴∠BCM=∠MCQ,且∠BCM+MCQ180°,

∴∠BCM=∠MCQ=∠PAM90°,且∠APM45°,

∴∠APM=∠AMP45°

APAM,

∵∠PAO+MAO90°,∠MAO+AMO90°,

∴∠PAO=∠AMO,且∠PEA=∠AOM90°,AMAP

∴△APE≌△MAOAAS

AEOM,PEAO3,

2m63,

m,

Q(,﹣3),P(﹣,3),

設(shè)直線PQ的解析式為:yax+c,

,解得:

∴直線PQ的解析式為:y=﹣x+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)計(jì)算技術(shù)和無(wú)線網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來(lái)越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象分別與軸和軸交于,兩點(diǎn),且與正比例函數(shù)的圖象交于點(diǎn).

1)求的值;

2)求正比例函數(shù)的表達(dá)式;

3)點(diǎn)是一次函數(shù)圖象上的一點(diǎn),且的面積是3,求點(diǎn)的坐標(biāo);

4)在軸上是否存在點(diǎn),使的值最?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt ABC中,AC=BCC=90°,DAB邊的中點(diǎn),EDF=90°,EDFD點(diǎn)旋轉(zhuǎn),它的兩邊分別交ACCB的延長(zhǎng)線于E、F.下面結(jié)論一定成立的是______.(填序號(hào))

CD=AB;②DE=DF;③SDEF=2SCEF;④SDEF-SCEF=SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰RtABC中,ABAC,∠BAC90°

1)如圖1,DE是等腰RtABC斜邊BC上兩動(dòng)點(diǎn),且∠DAE45°,將ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90后,得到AFC,連接DF

①求證:AED≌△AFD

②當(dāng)BE3,CE7時(shí),求DE的長(zhǎng);

2)如圖2,點(diǎn)D是等腰RtABC斜邊BC所在直線上的一動(dòng)點(diǎn),連接AD,以點(diǎn)A為直角頂點(diǎn)作等腰RtADE,當(dāng)BD3,BC9時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c 的圖象與 x 軸交于 B、C 兩點(diǎn),交 y 軸于點(diǎn) A.

(1)根據(jù)圖象請(qǐng)用“>”、“<”“=”填空:a 0,b 0,c 0;

(2)如果 OC=OA= OB,BC=3,求這個(gè)二次函數(shù)的解析式;

(3) 在(2)中拋物線的對(duì)稱軸上,存在點(diǎn) Q 使得OQA 的周長(zhǎng)最短,試求出點(diǎn) Q 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,兩家商店搞促銷活動(dòng),甲店:買一只茶壺贈(zèng)一只茶杯;乙店:按定價(jià)的9折優(yōu)惠,某顧客需購(gòu)買茶壺4只,茶杯若干只(不少于4只).

1)設(shè)購(gòu)買茶杯數(shù)為(只),在甲店購(gòu)買的付款為(元),在乙店購(gòu)買的付款數(shù)為(元),分別寫出在兩家商店購(gòu)物的付款數(shù)與茶杯數(shù)之間的關(guān)系式;

2)當(dāng)購(gòu)買多少只茶杯時(shí),兩家商店的花費(fèi)相同?

3)當(dāng)購(gòu)買20只茶杯時(shí),去哪家商店購(gòu)物比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在國(guó)家的宏觀調(diào)控下,某市的商品房成交價(jià)由今年3月份的5000/m2下降到5月份的4050/m2.

(1)4、5兩月平均每月降價(jià)的百分率是多少?

(2)如果房?jī)r(jià)繼續(xù)回落,按此降價(jià)的百分率,你預(yù)測(cè)到7月分該市的商品房成交均價(jià)是否會(huì)跌破3000/m2?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,A(a,0)B(0,b),且|a2|(b2a)20,點(diǎn)Px軸上一動(dòng)點(diǎn),連接BP,在第一象限內(nèi)作BCABBCAB

(1) 求點(diǎn)A、B的坐標(biāo)

(2) 如圖1,連接CP.當(dāng)CPBC時(shí),作CDBP于點(diǎn)D,求線段CD的長(zhǎng)度

(3) 如圖2,在第一象限內(nèi)作BQBPBQBP,連接PQ.設(shè)P(p,0),直接寫出SPCQ_____

查看答案和解析>>

同步練習(xí)冊(cè)答案