【題目】如圖①AD是△ABC的角平分線,則∠________=∠________= ∠________,
②AE是△ABC的中線,則________=________=________,
③AF是△ABC的高線,則∠________=∠________=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其對稱軸l與x軸交于點(diǎn)C,它的頂點(diǎn)為點(diǎn)D.
(1)寫出點(diǎn)D的坐標(biāo) .
(2)點(diǎn)P在對稱軸l上,位于點(diǎn)C上方,且CP=2CD,以P為頂點(diǎn)的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點(diǎn)A.
①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點(diǎn)B;
②點(diǎn)R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當(dāng)點(diǎn)R的坐標(biāo)為 時(shí),二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個(gè)點(diǎn)到x軸的距離等于2d;
③如圖2,已知0<m<2,過點(diǎn)M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點(diǎn)E、F、G、H(點(diǎn)E、G在對稱軸l左側(cè)),過點(diǎn)H作x軸的垂線,垂足為點(diǎn)N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點(diǎn)Q,若△GHN∽△EHQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2,),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為( 。
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC向右平移3個(gè)單位長度,然后再向上平移2個(gè)單位長度,可以得到△A1B1C1(點(diǎn)A的對應(yīng)點(diǎn)是A1,點(diǎn)B的對應(yīng)點(diǎn)是B1,點(diǎn)C的對應(yīng)點(diǎn)是C1).
(1)畫出平移后的△A1B1C1;
(2)求△ABC的面積;
(3)已知點(diǎn)P在x軸上,以A1、B1、P為頂點(diǎn)的三角形面積為6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30,點(diǎn)M、N分別是射線OB、OA上的動(dòng)點(diǎn),點(diǎn)P為∠AOB內(nèi)一點(diǎn),且OP=8,則△PMN的周長的最小值=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F,Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系式 ;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,BF平分交AD于點(diǎn)F,AEBF于點(diǎn)O,交BC于點(diǎn)E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)若AE=6,BF=8,CE=3,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把兩個(gè)邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點(diǎn)E、F分別是射線CB、DC上的動(dòng)點(diǎn)(E、F與B、C、D不重合),且始終保持BE=CF,連結(jié)AE、AF、EF.
(1)求證:①△ABE≌△ACF;②△AEF是等邊三角形;
(2)①當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),EF⊥DC?
②若AB=4,當(dāng)∠EAB=15°時(shí),求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com