【題目】如圖,將邊長為2的正方形OABC如圖放置,O為原點.

(Ⅰ)若將正方形OABC繞點O逆時針旋轉(zhuǎn)60°時,如圖,求點A的坐標;

(Ⅱ)如圖,若將圖中的正方形OABC繞點O逆時針旋轉(zhuǎn)75°時,求點B的坐標.

【答案】(1),1)(2)(,

【解析】試題分析:1)過點Ax軸的垂線,垂足為D,ADO=90°,根據(jù)旋轉(zhuǎn)角得出∠AOD=30°,進而得到AD=AO=1,DO=,據(jù)此可得點A的坐標;

2)連接BO,過BBDy軸于D,根據(jù)旋轉(zhuǎn)角為75°,可得∠BOD=30°,根據(jù)勾股定理可得BO=2,再根據(jù)RtBOD中,BD=,OD=,可得點B的坐標.

解:(1)過點A作x軸的垂線,垂足為D,∠ADO=90°,

旋轉(zhuǎn)角為60°,

∴∠AOD=90°﹣60°=30°,

∴AD=AO=1,DO=,∴A(﹣,1);

(2)連接BO,過B作BDy軸于D,

旋轉(zhuǎn)角為75°,∠AOB=45°,

∴∠BOD=75°﹣45°=30°,

∵∠A=90°,AB=AO=2,

∴BO=2,

∴Rt△BOD中,BD=,OD=,∴B(﹣,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(8,0),點B(0,6),把ABO繞點B逆時針旋轉(zhuǎn)得A′B′O′,點A、O旋轉(zhuǎn)后的對應(yīng)點為A′、O′,記旋轉(zhuǎn)角為α.

(1)如圖1,若α=90°,則AB=   ,并求AA′的長;

(2)如圖2,若α=120°,求點O′的坐標;

(3)在(2)的條件下,邊OA上的一點P旋轉(zhuǎn)后的對應(yīng)點為P′,當(dāng)O′P+BP′取得最小值時,直接寫出點P′的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+2x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.

(1)求拋物線的解析式;

(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點Py軸的平行線交直線EO于點G,作PHEO,垂足為H.設(shè)PH的長為l,點P的橫坐標為m,求lm的函數(shù)關(guān)系式(不必寫出m的取值范圍),并求出l的最大值;

(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東東在研究數(shù)學(xué)問題時遇到一個定義:將三個已經(jīng)排好順序數(shù):x1x2,x3,稱為數(shù)列x1,x2,x3.計算|x1|,,,將這三個數(shù)的最小值稱為數(shù)列x1,x2,x3的最佳值.例如,對于數(shù)列2,-1,3,因為|2|=2,=,=,所以數(shù)列2,-1,3的最佳值為

東東進一步發(fā)現(xiàn):當(dāng)改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應(yīng)的最佳值.如數(shù)列-1,2,3的最佳值為;數(shù)列3,-1,2的最佳值為1.經(jīng)過研究,東東發(fā)現(xiàn),對于“2,-13”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,最佳值的最小值為.根據(jù)以上材料,回答下列問題:

1)數(shù)列-4,-3,1的最佳值為

2)將“-4-32”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的最佳值的最小值為 ,取得最佳值最小值的數(shù)列為 (寫出一個即可);

3)將2,-9,aa1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的最佳值為1,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點,與y軸交于C點,且經(jīng)過點(2,﹣3a),對稱軸是直線x=1,頂點是M.

(1)求拋物線對應(yīng)的函數(shù)表達式;

(2)經(jīng)過C,M兩點作直線與x軸交于點N,在拋物線上是否存在這樣的點P,使以點P,A,C,N為頂點的四邊形為平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)設(shè)直線y=﹣x+3與y軸的交點是D,在線段BD上任取一點E(不與B,D重合),經(jīng)過A,B,E三點的圓交直線BC于點F,試判斷AEF的形狀,并說明理由;

(4)當(dāng)E是直線y=﹣x+3上任意一點時,(3)中的結(jié)論是否成立(請直接寫出結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)用“*”表示一種新運算:對于任意正實數(shù)a,b,都有.例如,,那么15*27__;(2)定義一種運算*,其規(guī)則為:當(dāng)ab,a*bb3;當(dāng)ab,a*bb2.根據(jù)這個規(guī)則,方程3*x27的解是__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)填表:

a

0.000 001

0.001

1

1 000

1 000 000

(2)由上表你發(fā)現(xiàn)了什么規(guī)律?請用語言敘述這個規(guī)律:______________________________.

(3)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:

①已知=1.442,則=__________,=__________;

②已知=0.076 96,則=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗剪了一些直角三角形紙片,她取出其中的幾張進行了如下的操作:

操作一:如圖,將RtABC沿某條直線折疊,使斜邊的兩個端點AB重合,折痕為DE.

1)如果AC=6cmBC=8cm,試求△ACD的周長.

2)如果∠CAD:∠BAD=47,求∠B的度數(shù).

操作二:如圖,小麗拿出另一張RtABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,已知兩直角邊AC=6cmBC=8cm,你能求出CD的長嗎?

操作三:如圖,小麗又拿出另一張RtABC紙片,將紙片折疊,折痕CDAB。你能證明:BC2+AD2=AC2+BD2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校9月的水費為元,電費比水費的2倍多40元,10月的水費比9月多支出了25%,電費比9月節(jié)約了25%

1)用表示該校9月的電費是多少元?

2)用表示該校10月的水、電費各是多少元?

3)如果該校10月的水、電費共1130元,那么10月的水電費與9月相比超支或節(jié)約了多少元?

查看答案和解析>>

同步練習(xí)冊答案