【題目】已知:如圖,AB是⊙O直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,若∠AEC=∠ODB.
(1)求證:BD是⊙O的切線;
(2)當(dāng)AB=10,BC=8時(shí),求BD的長(zhǎng).
【答案】(1)見解析;(2)
【解析】
(1)從切線的判定為目標(biāo),來求BD⊥AB,連接AC通過相似來證得;
(2)通過已知條件和第一步求得的三角形相似求得BD的長(zhǎng)度.
(1)證明:連接AC,
∵AB是⊙O的直徑
∴∠ACB=90°
又∵OD⊥BC
∴AC∥OE
∴∠CAB=∠EOB
由對(duì)的圓周角相等
∴∠AEC=∠ABC
又∵∠AEC=∠ODB
∴∠ODB=∠OBC
∴△DBF∽△OBD
∴∠OBD=90°
即BD⊥AB
又∵AB是直徑
∴BD是⊙O的切線.
(2)∵OD⊥弦BC于點(diǎn)F,且點(diǎn)O圓心,
∴BF=FC
∴BF=4
由題意OB是半徑即為5
∴在直角三角形OBF中OF為3
由以上(1)得到△DBF∽△OBD
∴
即得BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)少年在綠茵場(chǎng)上游戲.小紅從點(diǎn)A出發(fā)沿線段AB運(yùn)動(dòng)到點(diǎn)B,小蘭從點(diǎn)C出發(fā),以相同的速度沿⊙O逆時(shí)針運(yùn)動(dòng)一周回到點(diǎn)C,兩人的運(yùn)動(dòng)路線如圖1所示,其中AC=DB.兩人同時(shí)開始運(yùn)動(dòng),直到都停止運(yùn)動(dòng)時(shí)游戲結(jié)束,其間他們與點(diǎn)C的距離y與時(shí)間x(單位:秒)的對(duì)應(yīng)關(guān)系如圖2所示.則下列說法正確的有________.(填序號(hào))
①小紅的運(yùn)動(dòng)路程比小蘭的長(zhǎng);② 兩人分別在1.09秒和7.49秒的時(shí)刻相遇;③ 當(dāng)小紅運(yùn)動(dòng)到點(diǎn)D的時(shí)候,小蘭已經(jīng)經(jīng)過了點(diǎn)D ;④在4.84秒時(shí),兩人的距離正好等于⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),作CE⊥AB干點(diǎn)E,BE=2OE,延長(zhǎng)AB至點(diǎn)D,使得BD=AB,P是弧AB(異于A,B)上一個(gè)動(dòng)點(diǎn),連接AC、PE.
(1)若AO=3,求AC的長(zhǎng)度;
(2)求證:CD是⊙O的切線;
(3)點(diǎn)P在運(yùn)動(dòng)的過程中是否存在常數(shù)k,使得PE=k·PD,如果存在,求k的值,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的二次函數(shù)y=x2+2kx+k﹣1,下列說法正確的是( )
A.對(duì)任意實(shí)數(shù)k,函數(shù)圖象與x軸都沒有交點(diǎn)
B.對(duì)任意實(shí)數(shù)k,函數(shù)圖象沒有唯一的定點(diǎn)
C.對(duì)任意實(shí)數(shù)k,函數(shù)圖象的頂點(diǎn)在拋物線y=﹣x2﹣x﹣1上運(yùn)動(dòng)
D.對(duì)任意實(shí)數(shù)k,當(dāng)x≥﹣k﹣1時(shí),函數(shù)y的值都隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育組為了了解九年級(jí)450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級(jí)部分學(xué)生進(jìn)行排球墊球測(cè)試(單位:個(gè)),根據(jù)測(cè)試結(jié)果,制成了下面不完整的統(tǒng)計(jì)圖表:
組別 | 個(gè)數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級(jí)排球墊球測(cè)試結(jié)果小于10的人數(shù);
(3)排球墊球測(cè)試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個(gè)男生,2個(gè)女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個(gè)男生一個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在反比例函數(shù)的圖象上,點(diǎn)N在一次函 數(shù)的圖象上,設(shè)點(diǎn)M的坐標(biāo)為(a,b),則二次函數(shù)( )
A.有最小值,且最小值是B.有最大值,且最大值是
C.有最大值,且最大值是D.有最小值,且最小值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com