【題目】關于x的二次函數(shù)yx2+2kx+k1,下列說法正確的是(  )

A.對任意實數(shù)k,函數(shù)圖象與x軸都沒有交點

B.對任意實數(shù)k,函數(shù)圖象沒有唯一的定點

C.對任意實數(shù)k,函數(shù)圖象的頂點在拋物線y=﹣x2x1上運動

D.對任意實數(shù)k,當x≥﹣k1時,函數(shù)y的值都隨x的增大而增大

【答案】C

【解析】

此題根據(jù)二次函數(shù)的圖像,位置與各項系數(shù)的關系做題即可.

A、△=4k1)=+30,拋物線與x軸有兩個交點,所以A選項錯誤;

B、k2x+1)=y+1,k為任意實數(shù),則2x+10,y+10,所以拋物線經(jīng)過定點(﹣,﹣),所以B選項錯誤;

Cy+k1,拋物線的頂點坐標為(﹣k,﹣+k1),則拋物線的頂點在拋物線y=﹣x1上運動,所以C選項正確;

D、拋物線的對稱軸為直線x=﹣=﹣k,拋物線開口向上,則x>﹣k時,函數(shù)y的值都隨x的增大而增大,所以D選項錯誤.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,BC=m,EBC邊上一點,沿AE翻折△ABE,點B落在點F處.

1)連接CF,若CF//AE,求EC的長(用含m的代數(shù)式表示);

2)若EC=,當點F落在矩形ABCD的邊上時,求m的值;

3)連接DF,在BC邊上是否存在兩個不同位置的點E,使得?若存在,直接寫出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從甲樓頂部A處測得乙樓頂部D處的俯角α30°,又從A處測得乙樓底部C處的俯角β60°.已知兩樓之間的距離BC18米,則乙樓CD的高度為__________(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線x=2,下列結論:(14a+b=0;(29a+c3b;(38a+7b+2c0;(4)若點A-3,y1)、點B-,y2)、點C,y3)在該函數(shù)圖象上,則y1y3y2;(5)若方程ax+1)(x-5=-3的兩根為x1x2,且x1x2,則x1-15x2.其中正確的結論有( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標系中,O為原點,A2,0),B(-2,0),Dy軸上的一個動點,∠ADC=90°(A、DC按順時針方向排列), BC與經(jīng)過AB、D三點的⊙M交于點E,DE平分∠ADC,連結AE,BD.顯然ΔDCE、ΔDEF、ΔDAE是半直角三角形.

1)求證:ΔABC是半直角三角形;

2)求證:∠DEC=∠DEA;

3)若點D的坐標為(08),求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,若∠AEC=∠ODB

1)求證:BD是⊙O的切線;

2)當AB10,BC8時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】慈氏塔位于岳陽市城西洞庭湖邊,是湖南省保存最好的古塔建筑之一.如圖,小亮的目高CD1.7米,他站在D處測得塔頂?shù)难鼋恰?/span>ACG45°,小琴的目高EF1.5米,她站在距離塔底中心Ba米遠的F處,測得塔頂?shù)难鼋恰?/span>AEH62.3°.(D、BF在同一水平線上,參考數(shù)據(jù):sin62.3°≈0.89,cos62.3°≈0.46tan62.3°≈1.9)

(1)求小亮與塔底中心的距離BD;(用含a的式子表示)

(2)若小亮與小琴相距52米,求慈氏塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B(3,2),點B與點C關于原點O對稱,BA⊥x軸于點A,CD⊥x軸于點D.

(1)求這個反比函數(shù)的表達式;

(2)求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受“新冠”疫情影響,全國中小學延遲開學,很多學校都開展起了“線上教學”,市場上對手寫板的需求激增.重慶某廠家準備3月份緊急生產(chǎn)A,B兩種型號的手寫板,若生產(chǎn)20A型號和30B型號手寫板,共需要投入36000元;若生產(chǎn)30A型號和20B型號手寫板,共需要投入34000元.

1)請問生產(chǎn)A,B兩種型號手寫板,每個各需要投入多少元的成本?

2)經(jīng)測算,生產(chǎn)的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準備用10萬元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設生產(chǎn)了A型號手寫板a個,求w關于a的函數(shù)關系式;

查看答案和解析>>

同步練習冊答案