【題目】某中學(xué)舉行了“校園好聲音”演唱比賽活動,根據(jù)學(xué)生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.
根據(jù)圖中提供的信息,回答下列問題:
(1)求參加演唱比賽的學(xué)生共有多少人,并把條形圖補充完整;
(2)求出扇形統(tǒng)計圖中,m= ,n= ;
(3)求出C等級對應(yīng)扇形的圓心角的度數(shù).
【答案】(1)40人, (2)10,40 (3)144°
【解析】
(1)由D等級的人數(shù)為12,占比為30%,即可求出參加演唱比賽的學(xué)生個數(shù);再補全直方圖;(2)根據(jù)直方圖中的數(shù)據(jù)即可求出扇形統(tǒng)計圖中的占比;(3)用C等級的占比乘以360°即可求出其圓心角度數(shù).
解:(1)參加演唱比賽的學(xué)生共有:12÷30%=40(人),
則B等級的人數(shù)為:40×20%=8(人),補全條形圖如圖:
(2)m=×100=10,n=×100=40;
(3)×360°=144°,
答:C等級對應(yīng)扇形的圓心角的度數(shù)為144°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D,E分別是AC,BC邊上的點,且AD=CE,連接BD,AE相交于點F。
(1)當(dāng)∠ABC=∠C=60°時,,那么;(直接寫出結(jié)論)
(2)當(dāng)△ABC為等邊三角形,時,請用含n的式子表示AF,BF的數(shù)量關(guān)系,并說明理由;
(3)如圖2,在△ABC中,∠ABC=45°,∠ACB=30°,AC=,點E在BC上,點D是AE的中點,當(dāng)∠EDC=30°時,CE和DE的數(shù)量關(guān)系為。(直接寫出結(jié)論,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)得到的,連接CC′交斜邊于點E,CC′的延長線交BB′于點F.
(1)證明:△AC C′∽△AB B′;
(2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時AC=BF,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線L:y=ax2+bx﹣1.5(a>0)與x軸交于點A(-1,0)和點B,頂點為M,對稱軸為直線l:x=1.
(1)直接寫出點B的坐標(biāo)及一元二次方程ax2+bx﹣1.5=0的解.
(2)求拋物線L的解析式及頂點M的坐標(biāo).
(3)如圖2,設(shè)點P是拋物線L上的一個動點,將拋物線L平移.使它的頂點移至點P,得到新拋物線L′,L′與直線l相交于點N.設(shè)點P的橫坐標(biāo)為m
①當(dāng)m=5時,PM與PN有怎樣的數(shù)量關(guān)系?請說明理由.
②當(dāng)m為大于1的任意實數(shù)時,①中的關(guān)系式還成立嗎?為什么?
③是否存在這樣的點P,使△PMN為等邊三角形?若存在.請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為反比例函數(shù)(k>0)在第一象限內(nèi)圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數(shù)y=﹣x﹣2的圖象于點A、B.若∠AOB=135°,則k的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點D,在點D處放置測角儀DE,測得旗桿頂部A的仰角為30°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.
(1)求點D的鉛垂高度(結(jié)果保留根號);
(2)求旗桿AB的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,點E在邊AD上,連接BE,在BE上取點F,連接AF并延長交BD于H,且∠AFE=60°,過C作CG∥BD,直線CG、AF交于G.
(1)求證:∠FAE=∠EBA;
(2)求證:AH=BE;
(3)若AE=3,BH=5,求線段FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com