【題目】如圖,直線與軸、軸分別相交于點B、C,經過B、C兩點的拋物線與軸的另一個交點為A,頂點為P,且對稱軸為直線。點G是拋物線位于直線下方的任意一點,連接PB、GB、GC、AC .
(1)求該拋物線的解析式;
(2)求△GBC面積的最大值;
(3)連接AC,在軸上是否存在一點Q,使得以點P,B,Q為頂點的三角形與△ABC相似?若存在,求出點Q的坐標;若不存在,請說明理由。
【答案】(1); (2)當時,面積的取最大值; (3)在x軸上存在兩點Q1(0,0),Q2(,0),能使得以點P,B,Q為頂點的三角形與△ABC相似.
【解析】
(1)根據二次函數(shù)的對稱性,已知對稱軸的解析式以及B點的坐標,即可求出A的坐標,利用拋物線過A、B、C三點,可用待定系數(shù)法來求函數(shù)的解析式;
(2)過作∥軸交于點.設點,則點,列出關于△GBC面積的解析式,利用二次函數(shù)的性質求解即可;
(3)本題要先根據拋物線的解析式求出頂點P的坐標,然后求出BP的長,進而分三情況進行討論:①當,∠PBQ=∠ABC=45°時;②當,∠QBP=∠ABC=45°時;③當Q在B點右側,即可得出∠PBQ≠∠BAC,因此此種情況是不成立的,綜上所述即可得出符合條件的Q的坐標.
(1)∵直線y=﹣x+3與x軸相交于點B、點C,
∴當y=0時,x=3;當x=0時,y=3.
∴點B的坐標為(3,0),點C的坐標為(0,3),
又∵拋物線過x軸上的A,B兩點,且對稱軸為x=2,
∴點A的坐標為(1,0).
又∵拋物線y=ax2+bx+c過點A(1,0),B(3,0),C(0,3),
, 解得:,
∴該拋物線的解析式為:;
(2)如圖,過作∥軸交于點.
設點,則點,
∴,
∴,
∵,
∴ 當時,面積的取最大值.
(3)如圖,
由y=x2﹣4x+3=(x﹣2)2﹣1,得頂點P(2,﹣1),
設拋物線的對稱軸交x軸于點M,
∵在Rt△PBM中,PM=MB=1,
∴∠PBM=45°,PB=.
由點B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,
由勾股定理,得BC=.
假設在x軸上存在點Q,使得以點P,B,Q為頂點的三角形與△ABC相似.
①當,∠PBQ=∠ABC=45°時,△PBQ∽△ABC.
即,
解得:BQ=3,
又∵BO=3,
∴點Q與點O重合,
∴Q1的坐標是(0,0).
②當,∠QBP=∠ABC=45°時,△QBP∽△ABC.
即,
解得:QB=.
∵OB=3,
∴OQ=OB﹣QB=3﹣,
∴Q2的坐標是(,0).
③當Q在B點右側,
則∠PBQ==135°,∠BAC<135°,
故∠PBQ≠∠BAC.
則點Q不可能在B點右側的x軸上,
綜上所述,在x軸上存在兩點Q1(0,0),Q2(,0),能使得以點P,B,Q為頂點的三角形與△ABC相似.
科目:初中數(shù)學 來源: 題型:
【題目】如圖中,,D、E為BC上兩點,且.將繞A順時針旋轉90°得到,連接EF,下列結論:①AE平分②③④,正確的有(序號)______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=﹣(x+2)2﹣2
(1)指出函數(shù)圖象的開口方向是 ,對稱軸是 ,頂點坐標為 .
(2)當x 時,y隨x的增大而減;
(3)怎樣移動拋物線y=﹣x2就可以得到拋物線y=﹣(x+2)2﹣2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內的圖象,點P是y=的圖象上一動點,PA⊥x軸于點A,交y=的圖象于點C,PB⊥y軸于點B,交y=的圖象于點D.
(1)求證:D是BP的中點;
(2)求四邊形ODPC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y=﹣x(x+3﹣a)+1是關于x的二次函數(shù),當1≤x≤5時,如果y在x=1時取得最小值,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程S(km)與北京時間t(時)的函數(shù)圖象如圖所示.根據圖象得到小亮結論,其中錯誤的是( )
A. 小亮騎自行車的平均速度是12km/h
B. 媽媽比小亮提前0.5小時到達姥姥家
C. 媽媽在距家12km處追上小亮
D. 9:30媽媽追上小亮
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖直線y=kx+k交x軸負半軸于點A,交y軸正半軸于點B,且AB=2
(1)求k的值;
(2)點P從A出發(fā),以每秒1個單位的速度沿射線AB運動,過點P作直線AB的垂線交x軸于點Q,連接OP,設△PQO的面積為S,點P運動時間為t,求S與t的函數(shù)關系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,當P在AB的延長線上,若OQ+AB=(BQ﹣OP),求此時直線PQ的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O與點E,連接BE,CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數(shù)為______時,四邊形AOCE是菱形;
②若AE=,AB=2,則DE的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陽陽超市以每件10元的價格購進了一批玩具,定價為20元時,平均每天可售出80個.經調查發(fā)現(xiàn),玩具的單價每降1元,每天可多售出40個;玩具的單價每漲1元,每天要少售出5個.如何定價才能使每天的利潤最大?求出此時的最大利潤.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com