【題目】二次函數(shù)yax2+bx+ca≠0)與一次函數(shù)yax+c在同一坐標系中的圖象大致為(   )

A.B.C.D.

【答案】D

【解析】

先根據(jù)一次函數(shù)的圖象判斷a、c的符號,再判斷二次函數(shù)圖象與實際是否相符,判斷正誤.

解:A、由一次函數(shù)y=ax+c的圖象可得:a0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,錯誤;
B、由一次函數(shù)y=ax+c的圖象可得:a0,c0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,交于y軸的正半軸,錯誤;
C、由一次函數(shù)y=ax+c的圖象可得:a0,c0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,錯誤.
D、由一次函數(shù)y=ax+c的圖象可得:a0,c0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,與一次函數(shù)的圖象交于同一點,正確;
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=6,EBC邊的中點,點P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE

2)當點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當以D為圓心,DP為半徑的⊙D線段AE只有一個公共點時,請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點和直線,則點到直線的距離可用公式計算.

例如:求點 到直線的距離.

解:因為直線,其中

所以點到直線的距離為

根據(jù)以上材料,解答下列問題:

1)點到直線的距離;

2)已知的圓心的坐標為 ,半徑2,判斷與直線的位置關(guān)系并說明理由;

3)已知直線平行,、是直線上的兩點且是直線上任意一點,求的面積.

4)如圖,直線軸、軸分別交于、兩點,把沿直線翻折后得到,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019級即將迎來中考,很多家長都在為孩子準備營養(yǎng)午餐.一家快餐店看準了商機,在55號推出了AB,C三種營養(yǎng)套餐.套餐C單價比套餐A5元,三種套餐的單價均為整數(shù),其中A套餐比C套餐少賣12份,B套餐比C套餐少賣6份,且C套餐當天賣出的數(shù)量大于26且不超過32,當天總銷售量為偶數(shù)且當天銷售額達到了1830元,商家發(fā)現(xiàn)C套餐很受歡迎,因此在6號加推出了C套餐升級版D套餐,四種套餐同時售賣,A套餐比5號銷售量減少,C套餐比5號銷售量增加,且A減少的份數(shù)比C套餐增加的份數(shù)多5份,B套餐銷售量不變,由于商家人手限制,兩天的總銷售量相同,則其他套餐單價不變的情況下,D套餐至少比C套餐費貴______時,才能使6號銷售額達到1950元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B 的坐標為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點DE,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對稱,當點F恰好落在線段OA上時,則k的值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形CEFG都是矩形,點E,G分別在邊CD,CB上,點FAC上,AB3,BC4

1)求的值;

2)把矩形CEFG繞點C順時針旋轉(zhuǎn)到圖的位置,PAF,BG的交點,連接CP

(Ⅰ)求的值;

(Ⅱ)判斷CPAF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AC=BC=2,正方形CDEF的頂點D、F分別在ACBC邊上,C、D兩點不重合,設(shè)CD的長度為xABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示yx之間的函數(shù)關(guān)系的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線BD上任意一點,連接AE并延長AEBC的延長線于點F,交CD于點G

1)求證:∠DAE=∠DCE;

2)若∠F30°,DG2,求CG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x軸、y軸上,OA4,OC3,直線my=﹣x從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線m與矩形OABC的兩邊分別交于點M,N,直線m運動的時間為t(),設(shè)△OMN的面積為S,則能反映St之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案