【題目】已知點和直線,則點到直線的距離可用公式計算.
例如:求點 到直線的距離.
解:因為直線,其中.
所以點到直線的距離為.
根據(jù)以上材料,解答下列問題:
(1)點到直線的距離;
(2)已知的圓心的坐標(biāo)為 ,半徑為2,判斷與直線的位置關(guān)系并說明理由;
(3)已知直線與平行,、是直線上的兩點且,是直線上任意一點,求的面積.
(4)如圖,直線與軸、軸分別交于、兩點,把沿直線翻折后得到,求的長.
【答案】(1);(2)與直線相切,理由詳見解析;(3);(4)
【解析】
(1)根據(jù)點到直線的距離公式代入即可;
(2)根據(jù)點到直線的距離公式即可求出圓心Q到直線的距離,然后根據(jù)直線與圓的位置關(guān)系判定即可;
(3)在直線上取一點,根據(jù)點到直線的距離公式即可求出點Q到直線的距離,然后根據(jù)平行線之間的距離處處相等和三角形面積公式計算即可;
(4)連接交AB于點,由折疊的性質(zhì)得,,從而得出直線AB垂直平分,可得OM⊥AB,,然后點到直線的距離公式即可求出點O到直線的距離OM的長,從而求出的長.
解:(1)根據(jù)點到直線的距離公式可知:點到直線的距離.
(2)結(jié)論:判斷與直線相切.
理由:根據(jù)點到直線的距離公式可知:點到直線的距離.
∵的半徑為2,
∴,
∴與直線相切.
(3)在直線上取一點,
根據(jù)點到直線的距離公式可知:點,到直線的距離,
∵直線與平行,
.
(4)解:如圖,連接交AB于點
由折疊的性質(zhì)得,,
∴直線AB垂直平分
∴OM⊥AB,
∴點O(0,0)到直線的距離OM=
∴
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊銳角三角形卡紙余料ABC,它的邊BC=120cm,高AD=80cm,為使卡紙余料得到充分利用,現(xiàn)把它裁剪成一個鄰邊之比為2:5的矩形紙片EFGH和正方形紙片PMNQ,裁剪時,矩形紙片的較長邊在BC上,正方形紙片一邊在矩形紙片的較長邊EH上,其余頂點均分別在AB,AC上,具體裁剪方式如圖所示。
(1)求矩形紙片較長邊EH的長;
(2)裁剪正方形紙片時,小聰同學(xué)是按以下方法進行裁剪的:先沿著剩余料中與邊EH平行的中位線剪一刀,再沿過該中位線兩端點向邊EH所作的垂線剪兩刀,請你通過計算,判斷小聰?shù)募舴ㄊ欠裾_.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB,CD是直徑,BE是切線,B為切點,連接AD,BC,BD.
(1)求證:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D,E是半圓O上的三等分點,C是弧DE上的一個動點,連結(jié)AC和BC,點I是△ABC的內(nèi)心,若⊙O的半徑為3,當(dāng)點C從點D運動到點E時,點I隨之運動形成的路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是兩條筆直的公路,點是上的一個超市,現(xiàn)在想建一個服務(wù)區(qū),要求到兩條公路的距離相等,且服務(wù)區(qū)到超市的距離最近,求作這個服務(wù)區(qū).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織學(xué)生到商場參加社會實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進價為120元,為尋求合適的銷售價格進行了4天的試銷,試銷情況如表所示:
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請求出這個函數(shù)關(guān)系式;
(2)若商場計劃每天的銷售利潤為3000元,則其單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場地面積最大?最大面積為多少?請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)與一次函數(shù)y=ax+c在同一坐標(biāo)系中的圖象大致為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:規(guī)定max(a,b)=,例如:max(﹣1,2)=2,max(3,3)=3.
感知:已知函數(shù)y=max(x+1,﹣2x+4)
(1)當(dāng)x=3時,y=_____;
(2)當(dāng)y=3時,x=______;
(3)當(dāng)y隨x的增大而增大時,x的取值范圍為______;
(4)當(dāng)﹣1≤x≤4時,y的取值范圍為______;
探究:已知函數(shù)y=max(x+2,)當(dāng)直線y=m(m為常數(shù))與函數(shù)y=max(x+2,)(﹣6<x≤3)的圖象有兩個公共點時,m的取值范圍為_______;
拓展:已知函數(shù)y=max(﹣x2+2nx,﹣nx)(n為常數(shù)且n≠0),當(dāng)n﹣3≤x≤2時,隨著x的增大,函數(shù)值y先減小后增大,直接寫出n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com