【題目】如圖,、是正方形,在上,直線、交于,且,、交于,當(dāng)在線段(不與、重合)上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①;②、所夾的銳角為;③;④若平分,則正方形的面積為4,其中結(jié)論正確的是__(填序號(hào))
【答案】①②③④
【解析】
由已知條件可證得△BEC≌△DGC,∠EBC=∠CDG,因?yàn)椤?/span>BDC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即∠BHD=90°,故①正確;由題意得、、、、五點(diǎn)都在以為直徑的圓上,根據(jù)圓周角定理即可得到∠AHD=45°,故②正確;由②的五點(diǎn)共圓,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根據(jù)相似三角形的性質(zhì)即可得到③正確;過作于,連接,若BE平分∠DBC,那么H是DG的中點(diǎn),易證得,求出,然后證明,可得,即,由此可知④正確.
解:① ,,,
,
,
,
,
∴∠BHD=90°,即,故①正確;
②由于、、都是直角,因此、、、、五點(diǎn)都在以為直徑的圓上,由圓周角定理知:,故②正確;
③由②知:、、、、五點(diǎn)共圓,則,
又,
,
∴,
∴,故③正確;
④過作于,連接;
若BE平分∠DBC,且,
∴是中點(diǎn),
∴垂直平分,
∴,為的中位線,
設(shè),則,,,
,,
,
,,
,
∴,即,
,即,
,且,
,
∴,即,
∴,
∴,即正方形的面積為4,故④正確;
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評(píng)價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購買某種商品后,對(duì)其有
“好評(píng)”、“中評(píng)”、“差評(píng)”三種評(píng)價(jià),假設(shè)這三種評(píng)價(jià)是等可能的.
(1)小明對(duì)一家網(wǎng)店銷售某種商品顯示的評(píng)價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.
利用圖中所提供的信息解決以下問題:
①小明一共統(tǒng)計(jì)了 個(gè)評(píng)價(jià);
②請(qǐng)將圖1補(bǔ)充完整;
③圖2中“差評(píng)”所占的百分比是 ;
(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購買了同一商品,請(qǐng)你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個(gè)給“好評(píng)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某農(nóng)場(chǎng)老板準(zhǔn)備建造一個(gè)矩形羊圈,他打算讓矩形羊圈的一面完全靠著墻,墻可利用的長(zhǎng)度為,另外三面用長(zhǎng)度為的籬笆圍成(籬笆正好要全部用完,且不考慮接頭的部分)
若要使矩形羊圈的面積為,則垂直于墻的一邊長(zhǎng)為多少米?
農(nóng)場(chǎng)老板又想將羊圈的面積重新建造成面積為,從而可以養(yǎng)更多的羊,請(qǐng)聰明的你告訴他:他的這個(gè)想法能實(shí)現(xiàn)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以2cm/s的速度,沿AB向終點(diǎn)B移動(dòng);點(diǎn)Q以1cm/s的速度沿BC向終點(diǎn)C移動(dòng),其中一點(diǎn)到終點(diǎn),另一點(diǎn)也隨之停止.連接PQ.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為x秒.
(1)用含x的代數(shù)式表示BQ、PB的長(zhǎng)度;
(2)當(dāng)x為何值時(shí),△PBQ為等腰三角形;
(3)是否存在x的值,使得四邊形APQC的面積等于20cm2?若存在,請(qǐng)求出此時(shí)x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則cosα=( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是的內(nèi)接正方形,,、是的兩 條切線,、為切點(diǎn).
(1)如圖1,求的半徑;
(2)如圖1,若點(diǎn)是的中點(diǎn),連結(jié),求的長(zhǎng)度;
(3)如圖2,若點(diǎn)是邊上任意一點(diǎn)(不含、),以點(diǎn)為直角頂點(diǎn),在的上方作,交直線于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對(duì)稱軸為x=1,下列結(jié)論中錯(cuò)誤的是( 。
A.abc<0B.2a+b=0C.b2﹣4ac>0D.a﹣b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,為定長(zhǎng),以為直徑的分別交、于點(diǎn)、.聯(lián)結(jié)、.下列結(jié)論:①;②點(diǎn)到的距離不變;③;④為外接圓的切線.其中正確的結(jié)論是( )
A.①②B.③④C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張相同的卡片,分別寫有數(shù)字2,0,1,5,將它們背面朝上(背面無差別)洗勻后放在桌上.
(1)從中任意抽出一張,抽到卡片上的數(shù)字為負(fù)數(shù)的概率;
(2)從中任意抽出兩張,用樹狀圖或表格列出所有可能的結(jié)果,并求抽出卡片上的數(shù)字積為正數(shù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com