【題目】如圖,正方形ABCD的邊長(zhǎng)為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長(zhǎng)為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書法是我國(guó)的文化瑰寶,研習(xí)書法能培養(yǎng)高雅的品格.某校為加強(qiáng)書法教學(xué),了解學(xué)生現(xiàn)有的書寫能力,隨機(jī)抽取了部分學(xué)生進(jìn)行測(cè)試,測(cè)試結(jié)果分為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí),分別用A,B,C,D表示,并將測(cè)試結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答以下問題:
(1)本次抽取的學(xué)生人數(shù)是 ,扇形統(tǒng)計(jì)圖中A所對(duì)應(yīng)扇形圓心角的度數(shù)是 .
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若該學(xué)校共有2800人,等級(jí)達(dá)到優(yōu)秀的人數(shù)大約有多少?
(4)A等級(jí)的4名學(xué)生中有3名女生1名男生,現(xiàn)在需要從這4人中隨機(jī)抽取2人參加電視臺(tái)舉辦的“中學(xué)生書法比賽”,請(qǐng)用列表或畫樹狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點(diǎn)O,則四邊形AB1OD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,已知AD=4,AB=3,點(diǎn)P是直線AD上的一點(diǎn),PE⊥AC,PF⊥BD,E,F分別是垂足,AG⊥BD與點(diǎn)G,
(1) 如圖①點(diǎn)P在線段AD上,求PE+PF的值;
(2) 如圖②點(diǎn)P在直線AD上,求PEPF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得正方形.圖中陰影部分的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題:
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3
根據(jù)你的觀察,探究下面的問題:
(1)若x2+4x+4+y2﹣8y+16=0,求的值.
(2)試說明不論x,y取什么有理數(shù)時(shí),多項(xiàng)式x2+y2﹣2x+2y+3的值總是正數(shù).
(3)已知a,b,c是△ABC的三邊長(zhǎng),滿足a2+b2=10a+8b﹣41,且c比a、b都大,求c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com