【題目】如圖,已知△ABC 中,AB 為半圓 O 的直徑,AC、BC 分別交半圓 O 于點 E、D,且 BD=DE.
(1)求證:點 D 是 BC 的中點.
(2)若點 E 是 AC 的中點,判斷△ABC 的形狀,并說明理由.
【答案】(1)詳見解析;(2)△ABC是等邊三角形.
【解析】
(1)連接AD,根據(jù)圓周角定理得到∠ADB=∠ADC=90°,證明△BAD≌△CAD,根據(jù)全等三角形的性質(zhì)證明;
(2)根據(jù)直角三角形的性質(zhì)得到DE=AE=EC,得到CA=CB,根據(jù)等邊三角形的判定定理證明.
(1)連接AD,
∵AB為半圓O的直徑,
∴∠ADB=∠ADC=90°,
∵BD=DE,
∴,
∴∠BAD=∠CAD,
在△BAD和△CAD中,,
∴△BAD≌△CAD(ASA),
∴BD=DC,即點D是BC的中點;
(2)∵△BAD≌△CAD,
∴AB=AC,
∵∠ADC=90°,點E是AC的中點,
∴DE=AE=EC,
由(1)得,DE=BD=DC,
∴CA=CB,
∴CA=CB=AB,
∴△ABC是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD交于點O,AC⊥AB,AB=,且AC:BD=2:3.
(1)求AC的長;
(2)求△AOD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的周長為30cm,把△ABC的邊AC對折,使頂點A和C重合,折痕交BC邊于點D,交AC邊于點E,若△ABD的周長是22cm,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB=80°
(1)若點C在優(yōu)弧BD上,求∠ACD的大小;
(2)若點C在劣弧BD上,直接寫出∠ACD的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧于點P,Q,且點P, Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當BQ=4時,求扇形COQ的面積及的長(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,請直接寫出OC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是課本中“作一個角等于已知角”的尺規(guī)作圖過程.已知:∠AOB. 求作:一個角,使它等于∠AOB.作法:如圖
(1)作射線O'A';
(2)以O為圓心,任意長為半徑作弧,交OA于C,交OB于D;
(3)以O'為圓心,OC為半徑作弧C'E',交O'A'于C';
(4)以C'為圓心,CD為半徑作弧,交弧C'E'于D';
(5)過點D'作射線O'B'.
則∠A'O'B'就是所求作的角.
請回答:該作圖的依據(jù)是( 。
A.SSSB.SASC.ASAD.AAS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸的另一個交點為A,現(xiàn)將拋物線向右平移m(m>2)個單位長度,所得拋物線與x軸交于C,D,與原拋物線交于點P,設(shè)△PCD的面積為S,則用m表示S正確的是( )
A. (m2﹣4) B. m2﹣2 C. (4﹣m2) D. 2﹣m2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是菱形ABCD對角線AC與BD的交點,CD=5cm,OD=3cm;過點C作CE∥DB,過點B作BE∥AC,CE與BE相交于點E.
(1)求OC的長;
(2)求四邊形OBEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛快遞車從長春出發(fā),走高速公路,途經(jīng)伊通,前往靖宇鎮(zhèn)送快遞,到達后卸貨和休息共用,然后開車按原速原路返回長春.這輛快遞車在長春到伊通、伊通到靖宇的路段上分別以不同的速度保持勻速前進,返回時也分別按原速返回.這輛快遞車距離長春的路程與它行駛的時間之間的函數(shù)圖象如圖所示.
(1)快遞車從伊通到長春的速度是__________,快遞車從長春到靖宇鎮(zhèn)往返一共用了__________;
(2)當這輛快遞車在靖宇到伊通的路段上行駛時,求與之間的函數(shù)關(guān)系式;
(3)如果這輛快遞車兩次經(jīng)過同一個服務(wù)區(qū)的時間間隔為,直接寫出這個服務(wù)區(qū)距離伊通的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com