【題目】如圖,O為菱形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點M.
(1)求證:CD與⊙O相切;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求⊙O的半徑.
【答案】(1)詳見解析;(2)⊙O的半徑為﹣6+4.
【解析】
(1)連接OM,過點O作ON⊥CD于N.只要證明OM=ON即可解決問題;
(2)設半徑為r,則OC=2-r,OM=r,利用勾股定理構建方程即可解決問題
(1)連接OM,過點O作ON⊥CD于N,
∵⊙O與BC相切于點M,
∴OM⊥BC,OM是⊙O的半徑,
∵AC是菱形ABCD的對角線,
∴AC平分∠BCD,
∵ON⊥CD,OM⊥BC,
∴ON=OM=r,
∴CD與⊙O相切;
(2)∵四邊形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ACB是等邊三角形,
∴AC=AB=2,
設半徑為r.則OC=2﹣r,OM=r,
∵∠ACB=60°,∠OMC=90°,
∴∠COM=30°,MC=,
在Rt△OMC中,∠OMC=90°,
∵OM2+CM2=OC2,
∴r2+()2=(2﹣r)2,
解得r=﹣6+4或﹣6﹣4(舍棄),
∴⊙O的半徑為﹣6+4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠MAN=30°,O為邊AN上一點,以點O為圓心,2為半徑作⊙O,交AN于D,E兩點,設AD=x.
(1)如圖①,當x取何值時,⊙O與AM相切?
(2)如圖②,當x為何值時,⊙O與AM相交于B,C兩點,且∠BOC=90°?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是從一副撲克牌中取出的兩組牌,分別是黑桃1,2,3,4和方塊1,2,3,4,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,那么摸出的兩張牌的牌面數(shù)字之和等于5的概率是多少?請你用列舉法(列表或畫樹狀圖)加以分析說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx﹣3交x軸于點A(﹣3,0)、B(1,0),在y軸上有一點E(0,1),連接AE.
(1)求二次函數(shù)的表達式;
(2)若點D為拋物線在x軸負半軸下方的一個動點,求△ADE面積的最大值;
(3)拋物線對稱軸上是否存在點P,使△AEP為等腰三角形?若存在,請直接寫出所有P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鳳城商場經(jīng)銷一種高檔水果,售價為每千克50元
(1)連續(xù)兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知這種水果的進價為每千克40元,每天可售出500千克,經(jīng)市場調查發(fā)現(xiàn),若每千克漲價1元,日銷售量將減少20千克,每千克應漲價多少元才能使每天獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為菱形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點M.
(1)求證:CD與⊙O相切;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為⊙O的直徑BA延長線上的一點,PC與⊙O相切,切點為C,點D是⊙O上一點,連結PD.已知PC=PD=BC.下列結論:(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC外切于⊙O,切點分別為點D,E,F,∠A=60°,BC=7,⊙O的半徑為.求:(1)求BF+CE的值; (2)求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com