【題目】閱讀下面的計算程序,并回答問題.
(1)填寫表格
輸入 |
| … | |||
輸出答案 | _____ | _____ | _____ | _____ | … |
(2)請寫出你發(fā)現的規(guī)律;
(3)用簡要過程說明你發(fā)現的規(guī)律的正確性.
科目:初中數學 來源: 題型:
【題目】如圖所示,以Rt△ABC的直角邊AB為直徑作圓O,與斜邊交于點D,E為BC邊上的中點,連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,AE,當∠CAB為何值時,四邊形AOED是平行四邊形?并在此條件下求sin∠CAE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=-2x+6與x軸交于點A,與直線y=x交于點B.
(1)點A坐標為_____________.
(2)動點M從原點O出發(fā),以每秒1個單位長度的速度沿著O→A的路線向終點A勻速運動,過點M作MP⊥x軸交直線y=x于點P,然后以MP為直角邊向右作等腰直角△MPN.設運動t秒時,ΔMPN與ΔOAB重疊部分的面積為S.求S與t之間的函數關系式,并直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠以80元/箱的價格購進60箱原材料,準備由甲、乙兩車間全部用于生產A產品.甲車間用每箱原材料可生產出A產品12千克,需耗水4噸;乙車間通過節(jié)能改造,用每箱原材料可生產出的A產品比甲車間少2千克,但耗水量是甲車間的一半.已知A產品售價為30元/千克,水價為5元/噸.設甲車間用x箱原材料生產A產品.
(1)用含x的代數式表示:乙車間用________箱原材料生產A產品;
(2)求兩車間生產這批A產品的總耗水量;
(3)若兩車間生產這批產品的總耗水為200噸,則該廠如何分配兩車間的生產原材料?
(4)用含x的代數式表示這次生產所能獲取的利潤并化簡.(注:利潤=產品總售價-購買原材料成本-水費)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是∠AOB內任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,△ABC中,∠ACB=90°,AC=BC,MN是過點A的直線,DB⊥MN于點D,聯(lián)結CD.求證:BD+AD= CD.
小明的思考過程如下:要證BD+AD=CD,需要將BD,AD轉化到同一條直線上,可以在MN上截取AE=BD,并聯(lián)結EC,可證△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結論得證。
小聰的思考過程如下:要證BD+AD=CD,需要構造以CD為腰的等腰直角三角形,可以過點C作CE⊥CD交MN于點E,可證△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結論得證。
請你參考小明或小聰的思考過程解決下面的問題:
(1)將圖1中的直線MN繞點A旋轉到圖2和圖3的兩種位置時,其它條件不變,猜想BD,AD,CD之間的數量關系,并選擇其中一個圖形加以證明;
(2)在直線MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,CD=___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知∠BAC=∠EAD=90o.
(1)判斷∠BAE與∠CAD的大小關系,并說明理由.
(2)當∠EAC=60o時,求∠BAD的大小.
(3)探究∠EAC與∠BAD的數量關系,請直接寫出結果,不要求說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com