【題目】請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,△ABC中,∠ACB=90°,AC=BC,MN是過(guò)點(diǎn)A的直線,DB⊥MN于點(diǎn)D,聯(lián)結(jié)CD.求證:BD+AD= CD.
小明的思考過(guò)程如下:要證BD+AD=CD,需要將BD,AD轉(zhuǎn)化到同一條直線上,可以在MN上截取AE=BD,并聯(lián)結(jié)EC,可證△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結(jié)論得證。
小聰?shù)乃伎歼^(guò)程如下:要證BD+AD=CD,需要構(gòu)造以CD為腰的等腰直角三角形,可以過(guò)點(diǎn)C作CE⊥CD交MN于點(diǎn)E,可證△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結(jié)論得證。
請(qǐng)你參考小明或小聰?shù)乃伎歼^(guò)程解決下面的問(wèn)題:
(1)將圖1中的直線MN繞點(diǎn)A旋轉(zhuǎn)到圖2和圖3的兩種位置時(shí),其它條件不變,猜想BD,AD,CD之間的數(shù)量關(guān)系,并選擇其中一個(gè)圖形加以證明;
(2)在直線MN繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,當(dāng)∠BCD=30°,BD=時(shí),CD=___.
【答案】(1)BDAD=CD.,證明見(jiàn)解析;(2)±1.
【解析】
(1)過(guò)點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,證明△ACE≌△DCB,則△ECB為等腰直角三角形,據(jù)此即可得到BE=CB,根據(jù)BE=AB-AE即可證得;
(2)過(guò)點(diǎn)B作BH⊥CD于點(diǎn)H,證明△BDH是等腰直角三角形,求得DH的長(zhǎng),在直角△BCH中,利用直角三角形中30°的銳角所對(duì)的直角邊等于斜邊的一半,即可求得.
(1)如圖2,過(guò)點(diǎn)C作CE⊥CD交MN于點(diǎn)E,則∠2=90°.
∵∠ACB=90°,∴∠2+∠ACD=∠ACB+∠ACD,
即∠ACE=∠BCD.
設(shè)AC與BD相交于點(diǎn)F,∵DB⊥MN,∴∠ADB=90°.
∴∠CAE+∠AFD=90°,∠1+∠BFC=90°.
∵∠AFD=∠BFC,∴∠CAE=∠1.
在△ACE和△BCD中
,
∴△ACE≌△BCD(ASA).
∴CE=CD,AE=BD.
在Rt△CDE中,∵CD +CE=DE,
∴2CD=DE,即DE=CD.
∵DE=AEAD=BDAD,∴BDAD=CD.
(2)MN在繞點(diǎn)A旋轉(zhuǎn)過(guò)程中,這個(gè)的意思并沒(méi)有指明是哪種情況,
∴綜合了第一個(gè)圖和第二個(gè)圖兩種情況
若是第1個(gè)圖:易證△ACE≌△DCB,CE=CD,
∴△ECD為等腰直角三角形,
∴∠AEC=45°=∠CBD,
過(guò)D作DH⊥CB.則△DHB為等腰直角三角形。
BD=BH,
∴BH=DH=1
直角三角形△CDH中,
∠DCH=30°,
BH=1,則CH= .
∴CD=+1
若是第二個(gè)圖:過(guò)B作BH⊥CD交CD延長(zhǎng)于H.
解法類似上面,CH=,DH=1,CD=1.
故答案為:±1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)都為a的正方形內(nèi)分別排列著一些大小相等的圓.
(1)根據(jù)圖中的規(guī)律,第4個(gè)正方形內(nèi)圓的個(gè)數(shù)是 ,第n個(gè)正方形內(nèi)圓的個(gè)數(shù)是 .
(2)如果把正方形內(nèi)除去圓的部分都涂上陰影.
①用含a的代數(shù)式分別表示第1個(gè)正方形中和第3個(gè)正方形中陰影部分的面積.(結(jié)果保留π)
②若a=10,請(qǐng)直接寫出第2014個(gè)正方形中陰影部分的面積 .(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的計(jì)算程序,并回答問(wèn)題.
(1)填寫表格
輸入 |
| … | |||
輸出答案 | _____ | _____ | _____ | _____ | … |
(2)請(qǐng)寫出你發(fā)現(xiàn)的規(guī)律;
(3)用簡(jiǎn)要過(guò)程說(shuō)明你發(fā)現(xiàn)的規(guī)律的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在社會(huì)主義新農(nóng)村建設(shè)中,某鄉(xiāng)鎮(zhèn)決定對(duì)一段公路進(jìn)行改造,已知這項(xiàng)工程由甲工程隊(duì)單獨(dú)做需要40天完成;如果由乙工程先單獨(dú)做10天,那么剩下的工程還需要兩隊(duì)合做20天才能完成.
(1)求乙工程隊(duì)單獨(dú)完成這項(xiàng)工程所需的天數(shù);
(2)求兩隊(duì)合作完成這項(xiàng)工程所需的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)陣是由50個(gè)偶數(shù)排成的.
(1)在數(shù)陣中任意做一類似于圖中的框,設(shè)其中最小的數(shù)為x,那么其他3個(gè)數(shù)怎樣表示?
(2)如果這四個(gè)數(shù)的和是172,能否求出這四個(gè)數(shù)?
(3)如果擴(kuò)充數(shù)陣的數(shù)據(jù),框中的四個(gè)數(shù)的和可以是2019嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題
(1)如圖1,已知點(diǎn)A、B、C,直線l及l上一點(diǎn)M,請(qǐng)你按照下列要求畫出圖形.
①畫射線BM
②畫線段AC
③請(qǐng)?jiān)谥本l上確定一點(diǎn)O,使點(diǎn)O到點(diǎn)A與點(diǎn)B的距離之和(OA+OB)最小
(2)有5個(gè)大小一樣的正方形制成的如圖2所示的拼接圖形(陰影部分),請(qǐng)你在圖中的拼接圖形上再接一個(gè)正方形,使新拼接成的圖形經(jīng)過(guò)折疊后能成為一個(gè)封閉的正方體盒子.(只需添加一個(gè)符合要求的正方形即可,并用陰影表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,點(diǎn)分別在平行四邊形各邊上,且AE=CG,BF=DH, 四邊形的周長(zhǎng)的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A(﹣2,﹣1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求該一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com