【題目】已知,如圖,在△ABC中,∠B<∠C,AD,AE分別是△ABC的高和角平分線,

1)若∠B30°,∠C50°.則∠DAE的度數(shù)是   .(直接寫出答案)

2)寫出∠DAE、∠B、∠C的數(shù)量關(guān)系:   ,并證明你的結(jié)論.

【答案】110°;(2(∠C﹣∠B).

【解析】

1)在△ABC中,由∠B與∠C的度數(shù)求出∠BAC的度數(shù),根據(jù)AE為角平分線求出∠BAE的度數(shù),由∠BAD-B即可求出∠DAE的度數(shù);(2)仿照(1)得出∠DAE與、∠B、∠C的數(shù)量關(guān)系即可.

解:(1)∵∠B30°,∠C50°,

∴∠BAC180°﹣∠B﹣∠C100°,

又∵AE是△ABC的角平分線,

∴∠BAEBAC50°,

AD是△ABC的高,

∴∠BAD90°﹣∠B90°﹣30°=60°,

則∠DAE=∠BAD﹣∠BAE10°,

故答案為:10°;

2)∠DAE(∠C﹣∠B),

理由如下:∵AD是△ABC的高,

∴∠ADC90°,

∴∠DAC180°﹣∠ADC﹣∠C90°﹣∠C,

AE是△ABC的角平分線,

∴∠EACBAC,

∵∠BAC180°﹣∠B﹣∠C

∴∠DAE=∠EAC﹣∠DAC,

BAC﹣(90°﹣∠C),

180°﹣∠B﹣∠C)﹣90°+C

90°﹣BC90°+C,

(∠C﹣∠B).

故答案為:(∠C﹣∠B).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC=BD,AD=AEDE=CE,∠A=36°,則∠B=( )

A. 45B. 36°C. 72°D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)點(diǎn)先繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,再作出它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)稱為一次變換,已知點(diǎn)A的坐標(biāo)為(﹣2,0),把點(diǎn)A經(jīng)過連續(xù)2014次這樣的變換得到的點(diǎn)A2014的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時(shí)后,兩車相距多少千米?

(5)行駛多長時(shí)間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了擴(kuò)大生產(chǎn),決定購買6臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇.其中甲型機(jī)器每日生產(chǎn)零件106個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)査,購買3臺(tái)甲型機(jī)器和2臺(tái)乙型機(jī)器共需要31萬元,購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多2萬元.

1)求甲、乙兩種機(jī)器每臺(tái)各多少萬元?

2)如果工廠購買機(jī)器的預(yù)算資金不超過34萬元,那么你認(rèn)為該工廠有哪幾種購買方案?

3)在(2)的條件下,如果要求該工廠購進(jìn)的6臺(tái)機(jī)器的日產(chǎn)量能力不能低于400個(gè),那么為了節(jié)約資金.應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形是菱形,,反比例函數(shù)的圖象經(jīng)過點(diǎn),若將菱形向下平移2個(gè)單位,點(diǎn)恰好落在反比例函數(shù)的圖象上,則反比例函數(shù)的表達(dá)式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長為1

1)求四邊形ABCD的面積和周長;

2)∠BCD是直角嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.

根據(jù)以上信息完成下列問題:

1統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;

2扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是

3已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案