【題目】如圖:在⊙O中,AD平分圓周角∠BAC,AEBC,∠BAC60°,∠OAD16°,求∠C的度數(shù)為( 。

A.50°B.30°C.44°D.45°

【答案】C

【解析】

連接OD、CD,等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠AOD=148°,根據(jù)圓周角定理得出∠ACD=74°,∠BCD=BAD=30°,進(jìn)而即可求得∠ACB=44°.

解:連接OD、CD

OAOD,

∴∠OAD=∠ODA16°

∴∠AOD180°16°16°148°

∴∠ACD74°,

∵∠BAC60°,AD平分圓周角∠BAC,

∴∠BAD30°,

∴∠BCD30°

∴∠ACB=∠ACD﹣∠BCD74°30°44°

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D△ABC的邊AC上,要判斷△ADB△ABC相似,添加一個條件,不正確的是(

A.∠ABD=∠CB.∠ADB=∠ABCC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,.

1)點從點開始沿邊向的速度移動,點點開始沿邊向點的速度移動.如果點,分別從同時出發(fā),經(jīng)過幾秒,的面積等于?

2)點從點開始沿邊向點的速度移動,點點開始沿邊向點的速度移動.如果點,分別從同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運動時間;若不能,請說明理由.

3)若點沿線段方向從點出發(fā)以的速度向點移動,點沿射線方向從點出發(fā)以的速度移動,同時出發(fā),問幾秒后,的面積為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx26mx+9m2+nm,n為常數(shù))

1)若n=﹣4,這個函數(shù)圖象與x軸交于A,B兩點(點AB分別在x軸的正、負(fù)半軸),與y軸交于點C,試求△ABC面積的最大值;

2)若n4m+4,當(dāng)x軸上的動點Q到拋物線的頂點P的距離最小值為4時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種可食用的野生菌,上市時,外商李經(jīng)理按市場價格30/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價格將以每天每千克上漲1元;但冷凍存放這批野生菌時每天需要支出各種費用合計310元,而且這類野生菌在冷庫中最多保存160天,同時,平均每天有3千克的野生菌損壞不能出售。

1)設(shè)x天后每千克該野生菌的市場價格為y元,試寫出yx之間的函數(shù)關(guān)系式;

2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為P元,試寫出Px之間的函數(shù)關(guān)系式;

3)李經(jīng)理將這批野生茵存放多少天后出售可獲得最大利潤W元?

(利潤=銷售總額-收購成本-各種費用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點、、.

1)請完成如下操作:①以點為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心,并連接.

2)請在(1)的基礎(chǔ)上,完成下列填空:

①寫出圓心點的坐標(biāo):( , );

的半徑= (結(jié)果保留根號);

③若扇形是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為 ;(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把半徑為沿弦折疊,經(jīng)過圓心,則陰影部分的面積為__________.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABACBAC的平分線交外接圓于D,DEABE,DMACM

(1)求證:BECM

(2)求證:ABAC=2BE

查看答案和解析>>

同步練習(xí)冊答案