【題目】如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
【答案】C
【解析】
由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.
∵∠A是公共角,
∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;
當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;
AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△CED都是等腰直角三角形,∠BCA=∠DCE=90°,且點D在線段AB上,連接AE.
(1)求證:①△BCD≌△ACE;②∠DAE=90°;
(2)若AB=8,當(dāng)點D在線段AB上什么位置時,四邊形ADCE的周長最。空堈f明并求出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與的圖象如圖,則下列結(jié)論①②,且的值隨著值的增大而減小.③關(guān)于的方程的解是④當(dāng)時,,其中正確的有___________.(只填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在①②③這三對數(shù)值中,__________是方程x+2y+z=3的解,__________是方程2x-y-z=1的解,__________是方程3x-y-z=2的解,因此__________是方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,AO=1.
(1)求∠C的大。
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,它是一個8×10的網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1.
(2)畫出△ABC關(guān)于點O的中心對稱圖形△A2B2C2.
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是,請畫出對稱軸.△A1B1C1與△A2B2C2組成的圖形 (填“是”或“不是”)軸對稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(﹣3,0),點B是x軸上異于點A一動點,設(shè)B(x,0),以AB為邊在x軸的上方作正方形ABCD.
(1)如圖(1),若點B(1,0),則點D的坐標為 ;
(2)若點E是AB的中點,∠DEF=90°,且EF交正方形外角的平分線BF于F.
①如圖(2),當(dāng)x>0時,求證:DE=EF;
②若點F的縱坐標為y,求y關(guān)于x的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com