【題目】如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)、、.

1)請(qǐng)完成如下操作:①以點(diǎn)為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心,并連接.

2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:

①寫出圓心點(diǎn)的坐標(biāo):( , );

的半徑= (結(jié)果保留根號(hào));

③若扇形是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面的面積為 ;(結(jié)果保留

【答案】①點(diǎn).的半徑;③該圓錐的底面的面積為.

【解析】

①利用過三點(diǎn)的圓可得圓心為圓上任意兩條弦的垂直平分線的交點(diǎn),即可得到D.

②利用勾股定理即可求出的半徑.

③先求出扇形的弧長(zhǎng)即為圓錐的底面圓的周長(zhǎng),即可算出底面圓的半徑,從而可求出底面圓的面積.

①根據(jù)圓心為弦垂直平分線的交點(diǎn),故分別作AB、BC的中垂線交點(diǎn)即為D,

由圖可知作點(diǎn).

②連接AD即為半徑,在Rt三角形AED中

的半徑.

③由圖可知,OA=DF=4,∠AOD=∠DFC=90°,OD=CF=2

∴△AOD≌△DFC

∴∠ADO=∠DCF,

又∵∠DCF+∠CDF=90°

∴∠ADO+∠CDF=90°

∴∠ADC=90°

根據(jù)圓錐側(cè)面弧長(zhǎng)等于底面圓的周長(zhǎng),

所以該圓錐的底面的半徑為.

該圓錐的底面的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線yx0)上,點(diǎn)B在雙曲線yx0)上,且ABx軸,BCy軸,點(diǎn)Cx軸上,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購(gòu)進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲取更多利潤(rùn), 商店決定提高銷售價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360; 若按每件25元的價(jià)格銷售時(shí),每月能賣210.假定每月銷售件數(shù)y()是價(jià)格x( /)的一次函數(shù).

(1)試求yx之間的函數(shù)關(guān)系式;

(2)在商品不積壓,且不考慮其他因素的條件下,問銷售價(jià)格為多少時(shí),才能使每月獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?(總利潤(rùn)=總收入-總成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在⊙O中,AD平分圓周角∠BACAEBC,∠BAC60°,∠OAD16°,求∠C的度數(shù)為( 。

A.50°B.30°C.44°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)EAB上一點(diǎn)(不與AB兩點(diǎn)重合),過點(diǎn)O,A,E的⊙IADF,AB5

1)求⊙I的直徑的取值范圍;

2)若⊙I的半徑為2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ACD中,∠ACD90°,ACb,CDa,ADc,點(diǎn)BCD的延長(zhǎng)線上

(1)求證:關(guān)于x的一元二次方程必有實(shí)數(shù)根

(2)當(dāng)b3,CB5時(shí).將線段AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE,連接BE,則當(dāng)a的值為多少時(shí),線段BE的長(zhǎng)最短,最短長(zhǎng)度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點(diǎn)D,若AI=2CD,點(diǎn)E為弦AC的中點(diǎn),連接EIIC,若IC=6,ID=5,則IE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);

2P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)Py軸的平行線,交直線AB于點(diǎn)C,連接PO,若POC的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長(zhǎng)25m)的空地上修建一個(gè)矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍。ㄈ鐖D).若設(shè)綠化帶的BC邊長(zhǎng)為x m,綠化帶的面積為y m2

1)求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)當(dāng)x為何值時(shí),滿足條件的綠化帶的面積最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案