【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點(diǎn)ECD的延長線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE;

2)求證:CA平分∠BCD

3)如圖(2),設(shè)AF是△ABCBC邊上的高,求證:EC2AF

【答案】(1)詳見解析(2)詳見解析;(3)詳見解析.

【解析】

1)根據(jù)全等三角形的判定定理ASA即可證得.

2)通過三角形全等求得ACAE,∠BCA=∠E,進(jìn)而根據(jù)等邊對(duì)等角求得∠ACD=∠E,從而求得∠BCA=∠E=∠ACD即可證得.

3)過點(diǎn)AAMCE,垂足為M,根據(jù)角的平分線的性質(zhì)求得AFAM,然后證得△CAE和△ACM是等腰直角三角形,進(jìn)而證得EC2AF

1)證明:∵∠ABC+∠ADC180°,∠ADE+∠ADC180°,

∴∠ABC=∠ADE,

在△ABC與△ADE中,

,

∴△ABC≌△ADEASA).

2)證明:∵△ABC≌△ADE,

ACAE,∠BCA=∠E,

∴∠ACD=∠E

∴∠BCA=∠E=∠ACD,即CA平分∠BCD

3)證明:如圖②,過點(diǎn)AAMCE,垂足為M,

AMCDAFCF,∠BCA=∠ACD

AFAM,

又∵∠BAC=∠DAE

∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD90°,

ACAE,∠CAE90°,

∴∠ACE=∠AEC45°,

AMCE,

∴∠ACE=∠CAM=∠MAE=∠E45°,

CMAMME

又∵AFAM,

EC2AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,O是AC的中點(diǎn),AD∥BC,AC=8,BD=6,.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動(dòng)點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā)向點(diǎn)O運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)O停止),運(yùn)動(dòng)速度分別是1個(gè)單位長度/秒和 個(gè)單位長度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.

(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當(dāng)四邊形ADEF為菱形時(shí),試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時(shí)拋物線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF90°,且EF交正方形外角的平分線CF于點(diǎn)F

1)求證:AEEF

2)(探究1)變特殊為一般:若題中“點(diǎn)E是邊BC的中點(diǎn)”變?yōu)椤包c(diǎn)EBC邊上任意一點(diǎn)”,則上述結(jié)論是否仍然成立?(填“是”或“否”).

3)(探究2)在探究1的前提下,若題中結(jié)論“AEEF”與條件“CF是正方形外角的平分線”互換,則命題是否還成立?請(qǐng)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)對(duì)校內(nèi)外安全監(jiān)控,創(chuàng)建平安校園,某學(xué)校計(jì)劃增加15臺(tái)監(jiān)控?cái)z像設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格,有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購買1臺(tái)甲型設(shè)備比購買1臺(tái)乙型設(shè)備多150元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少400元.

甲型

乙型

價(jià)格(元/臺(tái))

a

b

有效半徑(米/臺(tái))

150

100

1)求a、b的值;

2)若購買該批設(shè)備的資金不超過11000元,且要求監(jiān)控半徑覆蓋范圍不低于1600米,兩種型號(hào)的設(shè)備均要至少買一臺(tái),請(qǐng)你為學(xué)校設(shè)計(jì)購買方案,并計(jì)算最低購買費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在射線AB上順次取兩點(diǎn)C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點(diǎn)G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.

(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】猜想:當(dāng)點(diǎn)E在兩條直線AB,CD之外時(shí)(如圖12),BED,B,D滿足怎樣的關(guān)系時(shí),有ABCD?對(duì)猜想進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊答案