【題目】填寫證明的理由.
已知:如圖,AB∥CD,EF、CG分別是∠AEC、∠ECD的角平分線;求證:EF∥CG.
證明:∵AB∥CD(已知)
∴∠AEC=∠DCE ()
又∵EF平分∠AEC (已知)
∴∠1= ∠AEC ()
同理∠2= ∠DCE,∴∠1=∠2
∴EF∥CG ()
【答案】兩直線平行,內(nèi)錯(cuò)角相等;角平分線的定義;內(nèi)錯(cuò)角相等,兩直線平行
【解析】證明:∵AB∥CD(已知),
∴∠AEC=∠DCE (兩直線平行,內(nèi)錯(cuò)角相等);
又∵EF平分∠AEC(已知),
∴∠1= ∠AEC(角平分線的定義),
同理∠2= ∠DCE,
∴∠1=∠2,
∴EF∥CG (內(nèi)錯(cuò)角相等,兩直線平行).
【考點(diǎn)精析】本題主要考查了角的平分線和平行線的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)D在y軸上,以D為圓心,作⊙D交x軸于點(diǎn)E、F,交y軸于點(diǎn)B、G,點(diǎn)A在上,連接AB交x軸于點(diǎn)H,連接 AF并延長到點(diǎn)C,使∠FBC=∠A.
(1)判斷直線BC與⊙D的位置關(guān)系,并說明理由;
(2)求證:BE2=BH·AB;
(3) 若點(diǎn)E坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,-2),AB=8,求F與A兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因長期干旱,甲水庫蓄水量降到了正常水位的最低值,為灌溉需要,由乙水庫向甲水庫勻速供水,20h后,甲水庫打開一個(gè)排灌閘為農(nóng)田勻速灌溉,又經(jīng)過20h,甲水庫打開另一個(gè)排灌閘同時(shí)灌溉,再經(jīng)過40h,乙水庫停止供水.甲水庫每個(gè)排灌閘的灌溉速度相同,圖中的折線表示甲水庫蓄水量Q(萬m3)與時(shí)間t(h)之間的函數(shù)關(guān)系.
求: (1)線段BC的函數(shù)表達(dá)式;
(2)乙水庫供水速度和甲水庫一個(gè)排灌閘的灌溉速度;
(3)乙水庫停止供水后,經(jīng)過多長時(shí)間甲水庫蓄水量又降到了正常水位的最低值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場有三層,第一層有商品(m+n)2種,第二層有商品m(m+n)種,第三層有商品n(m+n)種,求這個(gè)商場共有多少種商品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于0的說法中錯(cuò)誤的是( )
A.0是絕對值最小的數(shù)
B.0的相反數(shù)是0
C.0是整數(shù)
D.0的倒數(shù)是0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°
(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5
①求證:AF⊥BD ②求AF的長度;
(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí),求證:AF⊥BD;
(3)如圖3,在(2)的條件下,連接CF并延長CF交AD于點(diǎn)G,∠AFG是一個(gè)固定的值嗎?若是,求出∠AFG的度數(shù);若不是,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com