【題目】如圖,正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象在第一象限交于點(diǎn)A,將線段OA沿x軸向右平移3個(gè)單位長(zhǎng)度得到線段O'A',其中點(diǎn)A與點(diǎn)A'對(duì)應(yīng),若O'A'的中點(diǎn)D恰好也在該反比例函數(shù)圖象上,則k的值為_____

【答案】4

【解析】

DEx軸交OAE,如圖,先利用平移的性質(zhì)得到OO′=3,OA=O′A′,再證明四邊形OO′DE為平行四邊形得到OE=O′D,接著判定OE= OA,設(shè)Et,t),則A2t,2t),Dt+3t),根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征k=2t2t=tt+3),然后先求出t,從而得到k的值.

解:作DEx軸交OAE,如圖,

∵線段OA沿x軸向右平移3個(gè)單位長(zhǎng)度得到線段O'A',

OO′=3,OAOA′,

OAOA′,

∴四邊形OODE為平行四邊形,

OEOD,

∵點(diǎn)DO'A'的中點(diǎn),

ODOA′,

OEOA

設(shè)Et,t),則A2t,2t),Dt+3,t),

A2t2t),Dt+3t)在反比例函數(shù)y的圖象上,

k2t2ttt+3),解得t1,k4

故答案為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市少年宮為小學(xué)生開設(shè)了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學(xué)生對(duì)這四類興趣班的喜愛情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表

最受歡迎興趣班調(diào)查問卷

統(tǒng)計(jì)表

選項(xiàng)

興趣班

請(qǐng)選擇

興趣班

頻數(shù)

頻率

A

繪畫

A

0.35

B

音樂

B

18

0.30

C

舞蹈

C

15

D

跆拳道

D

6

你好!請(qǐng)選擇一個(gè)(只能選一個(gè))你最喜歡的興趣班,在其后空格內(nèi)打“”,謝謝你的合作.

1

請(qǐng)你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問題:

1)統(tǒng)計(jì)表中的 ;

2)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該市2000名小學(xué)生中最喜歡“繪畫”興趣的人數(shù);

3)王姝和李要選擇參加興趣班,若他們每人從AB、CD四類興趣班中隨機(jī)選取一類,請(qǐng)用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明站在江邊某瞭望臺(tái)DE的頂端D處,測(cè)得江面上的漁船A的俯角為40°.若瞭望臺(tái)DE垂直于江面,它的高度為3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長(zhǎng)BC10米.

(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19

1)求瞭望臺(tái)DE的頂端D到江面AB的距離;

2)求漁船A到迎水坡BC的底端B的距離.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交于點(diǎn)A-1,0),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B

(1) 求一次函數(shù)解析式;

(2)求頂點(diǎn)P的坐標(biāo);

(3)平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo);

(4)設(shè)拋物線的對(duì)稱軸交x軸與點(diǎn)E,聯(lián)結(jié)APy軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動(dòng)點(diǎn),聯(lián)結(jié)QD、QN,請(qǐng)直接寫出QD+QN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 1)問題感知 如圖1,在△ABC中,∠C90°,且ACBC,點(diǎn)P是邊AC的中點(diǎn),連接BP,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°到線段PD.連接AD.過點(diǎn)PPEABBC于點(diǎn)E,則圖中與△BEP全等的三角形是   ,∠BAD   °;

2)問題拓展 如圖2,在△ABC中,ACBCAB,點(diǎn)PCA延長(zhǎng)線上一點(diǎn),連接BP,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)到線段PD,使得∠BPD=∠C,連接AD,則線段CPAD之間存在的數(shù)量關(guān)系為CPAD,請(qǐng)給予證明;

3)問題解決 如圖3,在△ABC中,ACBCAB2,點(diǎn)P在直線AC上,且∠APB30°,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°到線段PD,連接AD,請(qǐng)直接寫出△ADP的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)邊長(zhǎng)分別為的正方形如圖放置(圖1),其未疊合部分(陰影)面積為;若再在圖1中大正方形的右下角擺放一個(gè)邊長(zhǎng)為的小正方形(如圖2),兩個(gè)小正方形疊合部分(陰影)面積為

1)用含、的代數(shù)式分別表示、

2)若,,求的值;

3)當(dāng)時(shí),求出圖3中陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=32°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以MN為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法:

AD是∠BAC的平分線;

CDADC的高;

③點(diǎn)DAB的垂直平分線上;

④∠ADC=61°

其中正確的有( .

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校初二學(xué)生每周上網(wǎng)的時(shí)間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時(shí)間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:

時(shí)間段

(小時(shí)/周)

小麗抽樣

人數(shù)

小杰抽樣

人數(shù)

01

6

22

12

10

10

23

16

6

34

8

2

(每組可含最低值,不含最高值)

1)你認(rèn)為哪位同學(xué)抽取的樣本不合理?請(qǐng)說明理由;

2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫完整;

3)專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案