【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A,將線段OA沿x軸向右平移3個(gè)單位長(zhǎng)度得到線段O'A',其中點(diǎn)A與點(diǎn)A'對(duì)應(yīng),若O'A'的中點(diǎn)D恰好也在該反比例函數(shù)圖象上,則k的值為_____.
【答案】4
【解析】
作DE∥x軸交OA于E,如圖,先利用平移的性質(zhì)得到OO′=3,OA=O′A′,再證明四邊形OO′DE為平行四邊形得到OE=O′D,接著判定OE= OA,設(shè)E(t,t),則A(2t,2t),D(t+3,t),根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征k=2t2t=t(t+3),然后先求出t,從而得到k的值.
解:作DE∥x軸交OA于E,如圖,
∵線段OA沿x軸向右平移3個(gè)單位長(zhǎng)度得到線段O'A',
∴OO′=3,OA=O′A′,
∵OA∥O′A′,
∴四邊形OO′DE為平行四邊形,
∴OE=O′D,
∵點(diǎn)D為O'A'的中點(diǎn),
∴O′D=O′A′,
∴OE=OA,
設(shè)E(t,t),則A(2t,2t),D(t+3,t),
∵A(2t,2t),D(t+3,t)在反比例函數(shù)y=的圖象上,
∴k=2t2t=t(t+3),解得t=1,k=4.
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市少年宮為小學(xué)生開設(shè)了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學(xué)生對(duì)這四類興趣班的喜愛情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表
最受歡迎興趣班調(diào)查問卷 | 統(tǒng)計(jì)表 | |||||
選項(xiàng) | 興趣班 | 請(qǐng)選擇 | 興趣班 | 頻數(shù) | 頻率 | |
A | 繪畫 | A | 0.35 | |||
B | 音樂 | B | 18 | 0.30 | ||
C | 舞蹈 | C | 15 | |||
D | 跆拳道 | D | 6 | |||
你好!請(qǐng)選擇一個(gè)(只能選一個(gè))你最喜歡的興趣班,在其后空格內(nèi)打“√”,謝謝你的合作. | 1 | |||||
請(qǐng)你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問題:
(1)統(tǒng)計(jì)表中的 , ;
(2)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該市2000名小學(xué)生中最喜歡“繪畫”興趣的人數(shù);
(3)王姝和李要選擇參加興趣班,若他們每人從A、B、C、D四類興趣班中隨機(jī)選取一類,請(qǐng)用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明站在江邊某瞭望臺(tái)DE的頂端D處,測(cè)得江面上的漁船A的俯角為40°.若瞭望臺(tái)DE垂直于江面,它的高度為3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米.
(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)
(1)求瞭望臺(tái)DE的頂端D到江面AB的距離;
(2)求漁船A到迎水坡BC的底端B的距離.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交于點(diǎn)A(-1,0),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B.
(1) 求一次函數(shù)解析式;
(2)求頂點(diǎn)P的坐標(biāo);
(3)平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo);
(4)設(shè)拋物線的對(duì)稱軸交x軸與點(diǎn)E,聯(lián)結(jié)AP交y軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動(dòng)點(diǎn),聯(lián)結(jié)QD、QN,請(qǐng)直接寫出QD+QN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (1)問題感知 如圖1,在△ABC中,∠C=90°,且AC=BC,點(diǎn)P是邊AC的中點(diǎn),連接BP,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°到線段PD.連接AD.過點(diǎn)P作PE∥AB交BC于點(diǎn)E,則圖中與△BEP全等的三角形是 ,∠BAD= °;
(2)問題拓展 如圖2,在△ABC中,AC=BC=AB,點(diǎn)P是CA延長(zhǎng)線上一點(diǎn),連接BP,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)到線段PD,使得∠BPD=∠C,連接AD,則線段CP與AD之間存在的數(shù)量關(guān)系為CP=AD,請(qǐng)給予證明;
(3)問題解決 如圖3,在△ABC中,AC=BC=AB=2,點(diǎn)P在直線AC上,且∠APB=30°,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°到線段PD,連接AD,請(qǐng)直接寫出△ADP的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)邊長(zhǎng)分別為和的正方形如圖放置(圖1),其未疊合部分(陰影)面積為;若再在圖1中大正方形的右下角擺放一個(gè)邊長(zhǎng)為的小正方形(如圖2),兩個(gè)小正方形疊合部分(陰影)面積為.
(1)用含、的代數(shù)式分別表示、;
(2)若,,求的值;
(3)當(dāng)時(shí),求出圖3中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=32°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法:
①AD是∠BAC的平分線;
②CD是△ADC的高;
③點(diǎn)D在AB的垂直平分線上;
④∠ADC=61°.
其中正確的有( ).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校初二學(xué)生每周上網(wǎng)的時(shí)間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時(shí)間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:
時(shí)間段 (小時(shí)/周) | 小麗抽樣 人數(shù) | 小杰抽樣 人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
(1)你認(rèn)為哪位同學(xué)抽取的樣本不合理?請(qǐng)說明理由;
(2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫完整;
(3)專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com