【題目】如圖,已知二次函數y=x2+bx﹣與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)試求出二次函數的表達式和點B的坐標;
(2)當點P在線段AO(點P不與A、O重合)運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
【答案】(1),B(1,0);(2);(3)點P的坐標為(4,0)時,此 時△PED與正方形ABCD重疊部分的面積為.
【解析】分析:(1)將點A的坐標代入二次函數的解析式求得其解析式,然后求得點B的坐標即可求得正方形ABCD的邊長,從而求得點D的縱坐標.
(2)PA=t,OE=l,利用△DAP∽△POE得到比例式,從而得到有關兩個變量的二次函數,求最值即可.
(3)分點P位于y軸左側和右側兩種情況討論即可得到重疊部分的面積.
詳解:(1)將點A(﹣3,0)代入y=x2+bx﹣得﹣3b﹣=0,解得b=1,
∴二次函數的表達式為y=x2+x﹣,
當y=0時, x2+x﹣=0,解得x1=1,x2=﹣3,
∴B(1,0);
(2)設PA=t(﹣3<t<0),則OP=3﹣t,如圖1,
∵DP⊥PE,
∴∠DPA=∠PEO,
∴△DAP∽△POE,
∴=,即=,
∴OE=﹣t2+t
=﹣(t﹣)2+,
∴當t=時,OE有最大值,即P為AO中點時,OE的最大值為;
(3)存在.
當點P在y軸左側時,如圖2,DE交AB于G點,
∵PD=PE,∠DPE=90°,
∴△DAP≌△POE,
∴PO=AD=4,
∴PA=1,OE=1,
∵AD∥OE,
∴==4,
∴AG=,
∴S△DAG=4=,
∴P點坐標為(﹣4,0),此時△PED與正方形ABCD重疊部分的面積為;
當P點在y軸右側時,如圖3,DE交AB于G點,DP與BC相交于Q,
同理可得△DAP≌△POE,
∴PO=AD=4,
∴PA=7,OE=7,
∵AD∥OE,
∴==,
∴OG=,
同理可得BQ=
∴S四邊形DGBQ=×(+1)×4+×4×=
∴當點P的坐標為(4,0)時,此時△PED與正方形ABCD重疊部分的面積為.
科目:初中數學 來源: 題型:
【題目】某跳水隊為了解運動員的年齡情況,作了一次年齡調查,根據跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:
(1)本次接受調查的跳水運動員人數為 ,圖①中的值為 ;
(2)求統(tǒng)計的這組跳水運動員年齡數據的平均數、眾數和中位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①所示,P是等邊△ABC內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉90°得△BCQ,連接PQ.當PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列結淪中,錯誤的有( 。
①Rt△ABC中,已知兩邊分別為3和4,則第三邊的長為5;②三角形的三邊分別為a、b、c,若a2+b2=c2,則∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,則這個三角形是一個直角三角形;④若(x﹣y)2+M=(x+y)2成立,則M=4xy.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數關系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數關系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD的邊AD在y軸上,拋物線經過點A、點B,與x軸交于點E、點F,且其頂點M在CD上。
(1)請直接寫出下列各點的坐標:
A ,B ,C ,D ;
(2)若點P是拋物線上一動點(點P不與點A、點B重合),過點P作軸的平行線l與直線AB交于點G,與直線BD交于點H,如圖2。
①當線段PH=2GH時,求點P的坐標;
②當點P在直線BD下方時,點K在直線BD上,且滿足△KPH∽△AEF,求△KPH面積的最大值。
圖1 圖2 備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉90°,則旋轉后點D的對應點D′的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有8筐楊梅,以每筐5千克為標準,超過的千克數記作正數,不足的千克數記作負數,稱后的記錄如下:
回答下列問題:
(1)這8筐楊梅中,最接近5千克的那筐楊梅為多少千克?
(2)以每筐5千克為標準,這8筐楊梅總計超過多少千克或者不足多少千克?
(3)若楊梅每千克售價25元,則出售這8筐楊梅可賣多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com