【題目】一天晚上,哥哥和弟弟拿兩根等長的標(biāo)桿直立在一盞亮著的路燈下,然后調(diào)整標(biāo)桿位置,使它們?cè)谠撀窡粝碌挠白?/span>恰好在一條直線上(如圖所示).

1)請(qǐng)?jiān)趫D中畫出路燈燈泡的位置;

2)哥哥和弟弟測(cè)得如下數(shù)據(jù):米,米,米,兩根標(biāo)桿的距離 米,且.請(qǐng)你根據(jù)以上信息計(jì)算燈泡距離地面的高度.

【答案】1)見解析;23.52

【解析】

1)連接FCEA并延長,相交于點(diǎn)P,則點(diǎn)P即是燈泡的位置;(2)過PPHEF,則PH即是燈泡距離地面的高度,根據(jù)已知可得EF=6.6米,AB//PH//CD,即可證明==,由AB=CD可得=,根據(jù)EH+FH=EF=6.6,解方程即可求出EH的長,進(jìn)而根據(jù)=即可得答案.

1)如圖所示,連接FCEA并延長,相交于點(diǎn)P,則點(diǎn)P即是燈泡的位置;

2)過PPHEF,則PH即是燈泡距離地面的高度,

AC=BD=3.6米,BE=1米,DF=2米,

EF=BE+BD+DF=3.6+1+2=6.6(),

ABEF,CDEF,PHEF,且AB、CD、PH在同一平面內(nèi),

AB//CD//PH

=,=,

AB=CD,

=

FH=EF-EH,

=,即

解得:EH=2.2(),

=,即=

解得:PH=3.52().

答:燈泡距離地面的高度是3.52.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AE平分∠BAD交邊BCE,DFAE,交邊BCF,若AD10EF4,則AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空:(1)方程x+的根是10,則另一個(gè)根是_____

2)如果方程有等值異號(hào)的根,那么m_____

3)如果關(guān)于x的方程,有增根x1,則k_____

4)方程的根是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,蘇寧商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購物.

(1)顧客購買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購物合算?

(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺(tái)冰箱買下,如果商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,當(dāng)點(diǎn)落在邊上時(shí),的延長線恰好經(jīng)過點(diǎn),則的長為(

A. 1B. C. -1+D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價(jià)為30元時(shí),每天可銷售200件:當(dāng)每件的售價(jià)每增加1元,每天的銷量將減少5件.

求銷量與售價(jià)之間的函數(shù)表達(dá)式;

如果每天的銷量不低于150件,那么,當(dāng)售價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?

該商店老板熱心公益事業(yè),決定從每天的銷售利潤中捐出100元給希望工程,為保證捐款后每天剩余利潤不低于2900元,請(qǐng)直接寫出該商品售價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O0,0),點(diǎn)A5,0),點(diǎn)B0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB;

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對(duì)角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直x軸,頂點(diǎn)A在函數(shù)y1x0)的圖象上,頂點(diǎn)B在函數(shù)y2x0)的圖象上,∠ABO30°,則=(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案