【題目】已知等腰梯形的高為5cm,兩底之差為10cm,則它的銳角為____.

【答案】45°

【解析】

如圖,作AEBCDFBC,根據(jù)等腰題型的性質(zhì)可推得△ABE≌△DCF,從而得到BE=CF,又因?yàn)?/span>AEFD為矩形,則AD=EF,因此BE=FC=BC-AD)÷2=5,而AE=DF=5,所以△ABE、△DCF為等腰直角三角形,進(jìn)而求得銳角度數(shù).

如圖,作AEBC、DFBC,

∵四邊形ABCD是等腰梯形

AB=CD,∠ABE=DCFAE=DF

∴△ABE≌△DCF

BE=CF

BC-AD=10,AD=EF

BE+FC=10

BE=FC=5

AE=5

∴△ABE、△DCF為等腰直角三角形

∴∠B=C=45°

故答案為:45°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)一了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計(jì)圖 如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是(

A.從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取兩球,取到兩個(gè)白球的概率

B.任意寫一個(gè)正整數(shù),它能被 2 整除的概率

C.拋一枚硬幣,連續(xù)兩次出現(xiàn)正面的概率

D.?dāng)S一枚正六面體的骰子,出現(xiàn) 1 點(diǎn)的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個(gè)底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知n邊形的內(nèi)角和θ=n-2×180°.

1甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BCD90°,且BCDC,直線PQ經(jīng)過點(diǎn)D.設(shè)∠PDCα45°α135°),BAPQ于點(diǎn)A,將射線CA繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,與直線PQ交于點(diǎn)E

1)當(dāng)α125°時(shí),∠ABC   °;

2)求證:ACCE;

3)若ABC的外心在其內(nèi)部,直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點(diǎn)試開放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過30人時(shí),人均收費(fèi)120元;超過30人且不超過m30m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.

1)求y關(guān)于x的函數(shù)表達(dá)式;

2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過一定數(shù)量時(shí),會出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一個(gè)足球垂直水平地面向上踢,時(shí)間為(秒時(shí)該足球距離地面的高度(米適用公式.下列結(jié)論:足球踢出4秒后回到地面;足球上升的最大高度為30米;足球踢出3秒后高度第一次到達(dá)15米;足球踢出2秒后高度到達(dá)最大.其中正確的結(jié)論是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AECF,∠ACF的平分線交AE于點(diǎn)BGCF上的一點(diǎn),∠GBE的平分線交CF于點(diǎn)D,且BDBC,下列結(jié)論:BC平分∠ABG;ACBG;與∠DBE互余的角有2個(gè);若∠Aα,則∠BDF.其中正確的有_____.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△DAC、△EBC均是等邊三角形,點(diǎn)AC、B在同一條直線上,且AEBD分別與CDCE交于點(diǎn)MN.

求證:(1AE=DB;

2△CMN為等邊三角形.

查看答案和解析>>

同步練習(xí)冊答案