【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)
(1)若△A1B1C1與△ABC關于y軸成軸對稱,寫出△A1B1C1三個頂點坐標:A1= ;B1= ;C1= ;
(2)畫出△A1B1C1,并求△A1B1C1面積.
科目:初中數學 來源: 題型:
【題目】我們知道:分式和分數有著很多的相似點.如類比分數的基本性質,我們得到了分式的基本性質;類比分數的運算法則,我們得到了分式的運算法則,等等.小學里,把分子比分母小的分數叫做真分數.類似地,我們把分子整式的次數小于分母整式的次數的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化作整式與真分式的和的形式.
如:;
(1)下列分式中,屬于真分式的是__________(填序號);
①②③④
(2)將假分式化為整式與真分式的和的形式:__________;若假分式的值為正整數,則整數的值為__________;
(3)請你寫出假分式化成整式與真分式的和的形式的完整過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=(k≠0)的圖象經過點A(﹣2,m),過點A作AB⊥x軸于點B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設C(x,y)是該反比例函數圖象上一點,當1≤x≤4時,求函數值y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,AC的垂直平分線分別交AC,BC于點E,F.點D為AB邊的中點,點M為EF上一動點,若AB=4,△ABC的面積是16,則△ADM周長的最小值為( 。
A.20B.16C.12D.10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習了如何證明“三邊成比例的兩個三角形相似”后,運用類似的思路證明了“兩角分別相等的兩個三角形相似”,以下是具體過程.
已知:如圖,在△ABC和△中,∠A=∠,∠B=∠.
求證:△ABC∽△.
證明:在線段上截取,過點D作DE∥,交于點E.
由此得到△∽△.
∴∠=∠,
∵∠B=∠,
∴∠=∠B,
∵∠=∠A,
∴△≌△ABC,
∴△ABC∽△.
小明將證明的基本思路概括如下,請補充完整:
(1)首先,通過作平行線,依據__________,可以判定所作△與_________;
(2)然后,再依據相似三角形的對應角相等和已知條件可以證明所作△與________;
(3)最后,可證得△ABC∽△.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一圓內接正八邊形ABCDEFGH,若△ADE的面積為8,則正八邊形ABCDEFGH的面積為( )
A. 32 B. 40 C. 24 D. 30
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料并解答問題
材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.
解:由分母為,可設,
則
∵對任意上述等式均成立,
∴且,∴,
∴
這樣,分式被拆分成了一個整式與一個分式的和
解答:(1)將分式拆分成一個整式與一個分式(分子為整數)的和的形式
(2)求出的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形 ABCD 中,M 是 BC 邊上一點,且點 M 不與 B、C 重合,點 P 在射線 AM 上,將線段 AP 繞點 A 順時針旋轉 90°得到線段 AQ,連接BP,DQ.
(1)依題意補全圖 1;
(2)①連接 DP,若點 P,Q,D 恰好在同一條直線上,求證:DP2+DQ2=2AB2;
②若點 P,Q,C 恰好在同一條直線上,則 BP 與 AB 的數量關系為: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com