【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,下列結(jié)論中,正確的結(jié)論的個數(shù)有( )
①a+b+c>0 ②a﹣b+c>0 ③abc<0 ④b+2a=0 ⑤△>0.
A. 5個 B. 4個 C. 3個 D. 2個
【答案】B
【解析】
利用x=1時,y>0,x=﹣1時,y<0可對①②進(jìn)行判斷;根據(jù)拋物線開口方向得到a<0,再利用對稱軸為直線x=﹣=1得到b>0,由拋物線與y軸的交點在x軸上方得到c>0,則可對③進(jìn)行判斷;根據(jù)x=﹣=1可對④進(jìn)行判斷;根據(jù)拋物線與x軸有2個交點可對⑤進(jìn)行判斷.
解:∵x=1時,y>0,
∴a+b+c>0,所以①正確;
∵x=﹣1時,y<0,
∴a﹣b+c<0,所以②錯誤;
∵拋物線開口向下,
∴a<0,
∵拋物線的對稱軸為直線x=﹣=1,
∴b=﹣2a>0,
∵拋物線與y軸的交點在x軸上方,
∴c>0,
∴abc<0,所以③正確;
∵x=﹣=1,
∴b+2a=0,所以④正確;
∵拋物線與x軸有2個交點,
∴△>0,所以⑤正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若干個相同的正方體組成一個幾何體,從不同方向看可以得到如圖所示的形狀,則這個幾何體最多可由多少個這樣的正方體組成?( 。
A. 12個 B. 13個 C. 14個 D. 18個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,晚上小亮走在大街上,他發(fā)現(xiàn)當(dāng)他站在大街上高度相等的兩盞路燈AB和CD之間時,自己右邊的影子NE的長為3m,左邊的影子ME的長為1.5m,又知小亮的身高EF為1.80m,兩盞路燈AC之間的距離為12m,點A、M、E、N、C在同一條直線上,問:路燈的高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時針旋轉(zhuǎn)一定角度后與△ADE重合,且點C恰好成為AD中點,如圖
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)角的度數(shù).
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點E,延長BC到點D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說法:①ab<0;②方程x2+bx+c=0的根為x1=-1,x2=3;③a+b+c>0;④當(dāng)x>1時,y隨x值的增大而增大;⑤當(dāng)y>0時,-1<x<3.其中正確的說法有__.(請寫出所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊要從甲、乙、丙、丁四人中選拔一名選手參賽,在選拔賽中,每人射擊10次,然后從他們的成績平均數(shù)(環(huán))及方差兩個因素進(jìn)行分析,甲、乙、丙的成績分析如表所示,丁的成績?nèi)鐖D所示.
甲 | 乙 | 丙 | |
平均數(shù) | 7.9 | 7.9 | 8.0 |
方差 | 3.29 | 0.49 | 1.8 |
根據(jù)以上圖表信息,參賽選手應(yīng)選( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,李老師設(shè)計了一個探究杠桿平衡條件的實驗:在一個自制類似天平的儀器的左邊固定托盤A中放置一個重物,在右邊活動托盤B(可左右移動)中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動托盤B與點O的距離x(cm),觀察活動托盤B中砝碼的質(zhì)量y(g)的變化情況.實驗數(shù)據(jù)記錄如下表:
(1)猜測y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗證;
(2)當(dāng)砝碼的質(zhì)量為24 g時,活動托盤B與點O的距離是多少?
(3)將活動托盤B往左移動時,應(yīng)往活動托盤B中添加還是減少砝碼?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.根據(jù)圖5中①所示的程序,得到了y與x的函數(shù)圖象,如圖5中②,若點M是
y軸正半軸上任意一點,過點M作PQ∥x軸交圖象于點P、Q,連接OP、OQ,則以下結(jié)論:
①x<0時,y=
②△OPQ的面積為定值
③x>0時,y隨x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正確結(jié)論是
A.①②④B.②④⑤C.③④⑤D.②③⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com