【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點E,延長BC到點D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求EF的長.
【答案】(1)證明見解析;(2).
【解析】
(1)由BC是⊙O的直徑,得到∠BAF+∠FAC=90°,等量代換得到∠D+∠AOD=90°,于是得到結(jié)論;
(2)連接BF,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.
(1)∵BC是⊙O的直徑,∴∠BAF+∠FAC=90°.
∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切線;
(2)連接BF.
∵∠FAC=∠AOD,∠ACE=∠ACE,∴△ACE∽△OCA,∴,∴,∴AC=AE.
∵∠CAE=∠CBF,∠AEC=∠BEF,∴△ACE∽△BFE,∴,∴,∴EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時分別從這條路兩端的入口處駛?cè)耄⑹冀K在高速公路上正常行駛.甲車駛往B城,乙車駛往A城,甲車在行駛過程中速度始終不變.甲車距B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的關(guān)系如圖.
(1)求y關(guān)于x的表達(dá)式;
(2)已知乙車以60千米/時的速度勻速行駛,設(shè)行駛過程中,兩車相距的路程為s(千米).請直接寫出s關(guān)于x的表達(dá)式;
(3)當(dāng)乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為a(千米/時)并保持勻速行駛,結(jié)果比甲車晚40分鐘到達(dá)終點,求乙車變化后的速度a.在下圖中畫出乙車離開B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達(dá)C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當(dāng)-1≤x≤2時,函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,下列結(jié)論中,正確的結(jié)論的個數(shù)有( 。
①a+b+c>0 ②a﹣b+c>0 ③abc<0 ④b+2a=0 ⑤△>0.
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是矗立在高速公路地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(參考數(shù)據(jù):=1.41,=1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C,且A(4,0),C(0,﹣3),對稱軸是直線x=1.
(1)求二次函數(shù)的解析式;
(2)若M是第四象限拋物線上一動點,且橫坐標(biāo)為m,設(shè)四邊形OCMA的面積為s.請寫出s與m之間的函數(shù)關(guān)系式,并求出當(dāng)m為何值時,四邊形OCMA的面積最大;
(3)設(shè)點B是x軸上的點,P是拋物線上的點,是否存在點P,使得以A,B、C,P四點為頂點的四邊形為平行四邊形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“流感”,某學(xué)校對教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒完后,y與x成反比例(如圖所示),F(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg。研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg才有效,那么此次消毒的有效時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com