【題目】某學(xué)校開展課外球類特色的體育活動,決定開設(shè)A:羽毛球、B:籃球、C:乒乓球、 D:足球四種球類項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種),隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡A項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是 度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學(xué)生3000人,請根據(jù)樣本估計全校最喜歡足球的學(xué)生人數(shù)約是多少?
【答案】(1)40%,144;(2)見詳解;(3)600人
【解析】
(1)根據(jù)各項目百分比之和為1可得,再用A的百分比乘以360度可得答案;
(2)先求出總?cè)藬?shù),再根據(jù)A項目所占百分比求得其人數(shù),即可補全條形圖;
(3)用總?cè)藬?shù)乘以D項目所占百分比可得答案.
解:(1)樣本中最喜歡A項目的人數(shù)所占的百分比為1-30%-10%-20%=40%,
其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是360°×40%=144度,
故答案為:40%,144;
(2)本次抽查的學(xué)生人數(shù)是:15÷30%=50(人),
∴喜歡A:籃球的人數(shù)是:50-15-5-10=20(人),
作圖如下:
(3)3000×20%=600人,
答:根據(jù)樣本估計全校最喜歡足球的學(xué)生人數(shù)約是600人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸的交點坐標(biāo)分別為A(1,0),B(x2,0)(點B在點A的右側(cè)),其對稱軸是x=3,該函數(shù)有最小值是﹣2.
(1)求二次函數(shù)解析式;
(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;
(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的三分線.
(1)如圖1,在△ABC中,AB=AC,點D在AC邊上,且AD=BD=BC,求∠A的大小;
(2)在圖1中過點C作一條線段CE,使BD,CE是△ABC的三分線;在圖2中畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個等腰三角形頂角的度數(shù);
(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分線,點D在BC邊上,點E在AC邊上,且AD=BD,DE=CE,請直接寫出∠C所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩城相距600千米,甲、乙兩車同時從A城出發(fā)駛向B城,甲車到達(dá)B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時間 x(小時)之間的函數(shù)圖象.
(1)求甲車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)當(dāng)它們行駛了7小時時,兩車相遇,求乙車的速度及乙車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)當(dāng)兩車相距100千米時,求甲車行駛的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,已知格點△ABC和格點O.
(1)畫出△ABC關(guān)于點O對稱的△A1B1C1;
(2)畫出△ABC繞點O順時針旋轉(zhuǎn)90°的△A2B2C2 ;
(3)若以點A、O、C、D為頂點的四邊形是平行四邊形,則點D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片中,,點是邊上的一點,將紙片沿折疊,點落在處,恰好經(jīng)過的中點,則的度數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請在下列橫線上注明理由.
如圖,在中,點,,在邊上,點在線段上,若,,點到和的距離相等.求證:點到和的距離相等.
證明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵點到和的距離相等(已知),
∴是的角平分線(______),
∴(角平分線的定義),
∴(______),
即平分(角平分線的定義),
∴點到和的距離相等(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價為每個20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個)與銷售單價x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種健身球的銷售單價不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com