【題目】在滑草過程中,小明發(fā)現(xiàn)滑道兩邊形如兩條雙曲線,如圖,點(diǎn)A1,A2,A3…在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)B1,B2,B3…反比例函數(shù)y=(k>1,x>0)的圖象上,A1B1∥A2B2…∥y軸,已知點(diǎn)A1,A2…的橫坐標(biāo)分別為1,2,…,令四邊形A1B1B2A2、A2B2B3A3、…的面積分別為S1、S2、….若S19=39,則k=__.
【答案】761
【解析】
根據(jù)反比例函數(shù)圖象上點(diǎn)的特征和平行于y軸的直線的性質(zhì)計(jì)算A1B1、A2B2、…,最后根據(jù)梯形面積公式可得S1、S2、S3、…Sn的值并找規(guī)律,根據(jù)已知S19=39列方程可得k的值.
解:∵A1B1//A2B2…//y軸,
∴A1和B1的橫坐標(biāo)相等,A2和B2的橫坐標(biāo)相等,…,An和Bn的橫坐標(biāo)相等,
∵點(diǎn)A1,A2…的橫坐標(biāo)分別為1,2,…,
∴點(diǎn)B1,B2…的橫坐標(biāo)分別為1,2,…,
∵點(diǎn)A1,A2,A3…在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)B1,B2,B3…反比例函數(shù)y=(k>1,x>0)的圖象上,
∴A1B1=k-1,A2B2=,
∴S1=×1×(-+k-1)=(k-)=,
同理得:A3B3=-=,A4B4=,…,
∴S2==(k-1),
S3==(k-1),
…,
∴Sn=,
∵S19=39,
∴×(k-1)=39,
解得:k=761,
故答案為:761.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的解析式;
(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo);
(3)P是拋物線上的第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)P作PMx軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過A、B、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)觀察圖象,寫出不等式ax2+bx+c>﹣x+3的解集為 ;
(3)若點(diǎn)D的坐標(biāo)為(﹣1,0),在直線y=﹣x+3上有一點(diǎn)P,使△ABO與△ADP相似,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意一個(gè)四位數(shù),如果千位與十位上的數(shù)字之和為7,百位與個(gè)位上的數(shù)字之和也為7,那么稱為“上進(jìn)數(shù)”.
(1)寫出最小和最大的“上進(jìn)數(shù)”;
(2)一個(gè)“上進(jìn)數(shù)”,若,且使一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,求這個(gè)“上進(jìn)數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D.過點(diǎn)D作EF⊥AC,垂足為E,且交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)已知AB=4,AE=3.求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于任意三點(diǎn)A,B,C,給出如下定義:若矩形的任何一條邊均與某條坐標(biāo)軸平行或重合,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的外延矩形,點(diǎn)A,B,C的所有外延矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最佳外延矩形.例如,圖①中的矩形A1B1C1D1,A2B2C2D2,A3B3CD3,都是點(diǎn)A,B,C的外延矩形,矩形A3B3CD3是點(diǎn)A,B,C的最佳外延矩形.
(1)如圖②,已知A(﹣1,0),B(3,2),點(diǎn)C在直線y=x﹣1上,設(shè)點(diǎn)C的橫坐標(biāo)為t.
①若t=,則點(diǎn)A,B,C的最佳外延矩形的面積為多少?
②若點(diǎn)A,B,C的最佳外延矩形的面積為9,求t的值.
(2)如圖③,已知點(diǎn)M(4,0),N(0,),P(x,y)是拋物線y=﹣x2+2x+3上一點(diǎn),求點(diǎn)M,N,P的最佳外延矩形面積的最小值,以及此時(shí)點(diǎn)P的橫坐標(biāo)x的取值范圍;
(3)已知D(1,0).若Q是拋物線y=﹣x2﹣2mx﹣m2+2m+1的圖象在﹣2≤x≤1之間的最高點(diǎn),點(diǎn)E的坐標(biāo)為(0,4m),設(shè)點(diǎn)D,E,Q的最佳外延矩形的面積為S,當(dāng)4≤S≤6時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).直線與拋物線同時(shí)經(jīng)過.
(1)求的值.
(2)點(diǎn)是二次函數(shù)圖象上一點(diǎn),(點(diǎn)在下方),過作軸,與交于點(diǎn),與軸交于點(diǎn).求的最大值.
(3)在(2)的條件下,是否存在點(diǎn),使和相似?若存在,求出點(diǎn)坐標(biāo),不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,過點(diǎn)作不軸的垂線交直于點(diǎn)以原點(diǎn)為圓心,的長(zhǎng)為半徑斷弧交軸正半軸于點(diǎn);再過點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,以的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn);…按此作法進(jìn)行下去,則的長(zhǎng)是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com