【題目】ABCD 中,∠BAD 的平分線交直線 BC 于點 E,交直線 DC 于點 F,D=120°

1)如圖 1,若 AD=6,求ADF 的面積;

2)如圖 2,過點 F FGCE,FGCE,連結 DB、DG,求證:BD=DG

【答案】1;(2)證明見解析.

【解析】

(1) 過點FAD的垂線,交AD的延長線于G,利用平行線和角平分線的性質(zhì)證明AD=DF,在中利用勾股定理求得GF.根據(jù)三角形面積公式計算面積即可;

2)連接BG、EG、GC,先證明四邊形ECFG為菱形,再根據(jù)∠ADF=120°,可證明,由此可得出BG=DG,再證明△BDG為等邊三角形即可得出結論.

1)解:如圖1,過點FAD的垂線,交AD的延長線于G,

AF平分∠BAD

∵四邊形ABCD為平行四邊形

∴∠DFG=30°,

.

(2)證明:連接BG、EG、GC

∴四邊形ECFG為平行四邊形

∴∠2=∠CEF

∵∠2=∠3

∴∠3=∠CEF

∴CE=FC

為菱形,

在△BCG△DFG

∴△BDG為等邊三角形

∴BD=DG.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx2x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

⑴求拋物線的解析式及頂點D的坐標;

⑵判斷ABC的形狀,證明你的結論;

⑶點M(m,0)x軸上的一個動點,當CM+DM的值最小時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點DDFAC,垂足為點F

1)求證:DF為⊙O的切線;

2)求證:FCE的中點;

3)若⊙O的半徑為3,∠CDF22.5°,求陰影部分的面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一副三角板如圖①放置,其中,斜邊,把三角板繞點順時針旋轉,得到,如圖②,這時相交于點,與相交于點.

(1)求的度數(shù);

(2)求線段的長;

(3)若把繞著點順時針再旋轉,得.這時點的內(nèi)部、外部,還是邊上?請說明理由,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州二中八十周年校慶來臨之際,學校本著簡樸,節(jié)儉,實效,特色的原則將 2019 10 25 日至 11 25 日定為校友回訪月,學?倓仗庂徺I了紅,黃,藍三種花卉裝扮 A,BC,D 四種造型,其中一個 A 造型需要 15 盆紅花,10 盆黃花,10 盆藍花;一個 B 造型需要 5 盆紅花,7 盆黃花,6 盆藍花;一個 C 造型需要 7 盆紅花,8 盆黃花,9 盆藍 花;一個 D 造型需要 7 盆紅花,10 盆黃花,10 盆藍花,若一個 A 造型售價 1800 元,利潤 率為 20%,一個 B 和一個 C 造型一共成本和為 1935 元,且一盆紅花的利潤率為 25%,則一個 D 造型的售價為_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC 在平面直角坐標系中的位置如圖所示,其中每 個小正方形的邊長為 1 個單位長度.

1)畫出△ABC 關于原點 O 的中心對稱圖形△A1B1C1,并寫出點 A1 的坐標;

2)將△ABC 繞點 C 順時針旋轉 90°得到△A2B2C,畫出△A2B2C,求在旋轉過程中,點 A 所經(jīng)過的路徑長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程Max2+bx+c0、Ncx2+bx+a0ac),則下列結論:①如果5是方程M的一個根,那么是方程N的一個根;②如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;③如果方程M與方程N有一個相同的根,那么這個根必是x1.其中正確的結論是( 。

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)用配方法將yx24x+3化成yaxh2+k的形式;

2)在平面直角坐標系中,畫出這個二次函數(shù)的圖象;

3)寫出當x為何值時,y0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC120°,點DAB邊上一點(不與點B重合),連接CD,將線段CD繞點D逆時針旋轉90°,點C的對應點為E,連接BE.若AB2,則△BDE面積的最大值為_____

查看答案和解析>>

同步練習冊答案