【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B 的坐標為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點DE,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對稱,當(dāng)點F恰好落在線段OA上時,則k的值是________.

【答案】12

【解析】

由于四邊形是矩形OABC,且△DEF與△DEB關(guān)于直線DE對稱.當(dāng)點F正好落在邊OA上,可得△DGF∽△FAE,然后把DE點坐標表示出來,再由三角形相似對應(yīng)邊成比例即可求出AF的長.然后利用勾股定理求出k=12

過點DDGOA垂足為G(如圖所示)

由題意知D,4),E8),DG=4

又∵△DEF與△DEB關(guān)于直線DE對稱.當(dāng)點F正好落在邊OA

DF=DB,∠B=DFE=90°

∵∠DGF=FAE=90°,∠DFG+EFA=90°

又∵∠EFA+FEA=90°

∴∠GDF=EFA

∴△DGF∽△FAE

,即,

解得:AF=2,

EF2=EA2+AF2

(4)2=2+4

解得:k=12

故答案為12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ACBD相交于點O,BC2OCEAB邊上一點.

1)若CE6,∠ACE15°,求BC的長;

2)若FBO上一點,且BFEFGCE中點,連接FG,AG求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點BBDAB,點C,D都在AB上方,AD交△BCD的外接圓⊙O于點E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長.

②若△BDC為直角三角形,求所有滿足條件的BD的長.

3)若BCEC ,則   .(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速.如圖,觀測點設(shè)在A處,離益陽大道的距離(AC)為30米.這時,一輛小轎車由西向東勻速行駛,測得此車從B處行駛到C處所用的時間為8秒,BAC=75°.

(1)求B、C兩點的距離;

(2)請判斷此車是否超過了益陽大道60千米/小時的限制速度?

(計算時距離精確到1米,參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小時≈16.7米/秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某班級決定開展球類活動,要求每個學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項參加訓(xùn)練(只選擇一項),根據(jù)學(xué)生的報名情況制成如下統(tǒng)計表:

項目

籃球

足球

排球

乒乓球

羽毛球

報名人數(shù)

12

8

4

a

10

占總?cè)藬?shù)的百分比

24%

b

1)該班學(xué)生的總?cè)藬?shù)為   人;

2)由表中的數(shù)據(jù)可知:a   b   ;

3)報名參加排球訓(xùn)練的四個人為兩男(分別記為A、B)兩女(分別記為C、D),現(xiàn)要隨機在這4人中選2人參加學(xué)校組織的校級訓(xùn)練,請用列表或樹狀圖的方法求出剛好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=x2+(2m1)x2m(<m),直線l的解析式為y=(k1)x+2mk+2.

(1)若拋物線與y軸交點的縱坐標為-3,試求拋物線的頂點坐標;

(2)試證明:拋物線與直線l必有兩個交點;

(3)若拋物線經(jīng)過點(x0,-4),且對于任意實數(shù)x,不等式x2+(2m1)x2m4都成立; 當(dāng)k2≤xk時,批物線的最小值為2k+1. 求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣1,0)、C03),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點A,EAF90°, 連接BE、DF.RtAEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;

(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰RtAEF變?yōu)?/span>RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;

(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將RtAEF變?yōu)?/span>AEF,且∠BADEAF,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】優(yōu)秀傳統(tǒng)文化進校園活動中,學(xué)校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學(xué)生人人參加,并且每人只能參加其中一項活動.教務(wù)處在該校七年級學(xué)生中隨機抽取了100名學(xué)生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).

請解答下列問題:

(1)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(2)在參加剪紙活動項目的學(xué)生中,男生所占的百分比是多少?

(3)若該校七年級學(xué)生共有500人,請估計其中參加書法項目活動的有多少人?

(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加器樂活動項目的女生的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案