【題目】如圖,小麗準(zhǔn)備測(cè)一根旗桿AB的高度,已知小麗的眼睛離地面的距離EC=1.5米,第一次測(cè)量點(diǎn)C和第二次測(cè)量點(diǎn)D之間的距離CD=10米,∠AEG=30°,AFG=60°,請(qǐng)你幫小麗計(jì)算出這根旗桿的高度.(結(jié)果保留根號(hào))

【答案】旗桿的高度為(1.5+)米.

【解析】試題分析:

由已知條件易證∠AEF=30°從而可得∠EAF=∠FEA,由此即可得到AF=EF=10結(jié)合∠AFG=30°,∠AGF=90°,△AGF中可求得AG的長(zhǎng),再由AB=AG+BG即可得到AB的長(zhǎng)了.

試題解析:

如下圖,由題意知:∠AEG=30°,AFG=60°EF=CD=10米,BG==EC=1.5米,

EAF=AFG﹣AEG=30°

EAF=FEA,

可得:AF=EF=10米.

AG=AFsinAFG=10×=(米),

AB=AG+GB=1.5+)米,

答:旗桿的高度為(1.5+)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A在原點(diǎn)O的左邊,表示的數(shù)為﹣10,點(diǎn)B在原點(diǎn)的右邊,且BO3AO.點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向右運(yùn)動(dòng)(點(diǎn)M,點(diǎn)N同時(shí)出發(fā)).

1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是   ,點(diǎn)B到點(diǎn)A的距離是   ;

2)經(jīng)過(guò)幾秒,原點(diǎn)O是線段MN的中點(diǎn)?

3)經(jīng)過(guò)幾秒,點(diǎn)M,N分別到點(diǎn)B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為預(yù)防傳染病,某校定期對(duì)教室進(jìn)行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時(shí)間成正比例;燃燒后,成反比例(如圖所示).現(xiàn)測(cè)得藥物分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥量為.根據(jù)以上信息解答下列問(wèn)題:

1)分別求出藥物燃燒時(shí)及燃燒后 關(guān)于的函數(shù)表達(dá)式.

2)當(dāng)每立方米空氣中的含藥量低于 時(shí),對(duì)人體方能無(wú)毒害作用,那么從消毒開(kāi)始,在哪個(gè)時(shí)段消毒人員不能停留在教室里?

3)當(dāng)室內(nèi)空氣中的含藥量每立方米不低于 的持續(xù)時(shí)間超過(guò)分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象交軸、軸分別于兩點(diǎn),交直線。

1)求點(diǎn)的坐標(biāo);

2)若,求的值;

3)在(2)的條件下,是線段上一點(diǎn),軸于,交,若,求點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD,B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中,裝有2個(gè)紅球,1個(gè)白球,1個(gè)黃球,這些球除顏色外都相同.求下列事件的概率:

(1)攪勻后從中任意摸出1個(gè)球,恰好是紅球;

(2)攪勻后從中任意摸出2個(gè)球,2個(gè)都是紅球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,∠A=80°,BD、CE分別平分∠ABC、∠ACB,BDCE交于點(diǎn)F.

1)求∠BFC的度數(shù);

2)如圖2,EG、DG分別平分∠AEF、∠ADF, EGDG交于點(diǎn)G ,求∠EGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D,E分別在AC,BC上,且CD·BCAC·CE,以E為圓心,DE長(zhǎng)為半徑作圓,⊙E經(jīng)過(guò)點(diǎn)B,與AB,BC分別交于點(diǎn)F,G

(1)求證:AC是⊙E的切線;

(2)若AF=4,CG=5,

①求⊙E的半徑;

②若Rt△ABC的內(nèi)切圓圓心為I,則IE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一條直線 m 將如圖 1 的直角鐵皮分成面積相等的兩部分.圖 2、圖 3 分別是甲、乙兩同學(xué)給出的作法,對(duì)于兩人的作法判斷正確的是(

A. 甲正確,乙不正確B. 甲不正確,乙正確

C. 甲、乙都正確D. 甲、乙都不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案