【題目】如圖,點P是正方形ABCD的對角線BD上一點,PEBC,PFCD,垂足分別為點E,F(xiàn),連接AP,EF,給出下列四個結(jié)論

AP=EF;②∠PFE=BAP;PD=EC;④△APD一定是等腰三角形.

其中正確的結(jié)論有( ).

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】由四邊形ABCD是正方形可以得出AB=BC=CD=AD,1=2=45°,作PHABH,可以得出四邊形BEPH為正方形,可以得出AH=CE,由條件可以得出四邊形PECF是矩形,就有CE=PF,利用三角形全等可以得出AP=EF,PFE=BAP,由勾股定理可以得出PD=PF,可以得出PD=EC,點PBD上要使APD一定是等腰三角只有AP=AD、PA=PDDA=DP時才成立,故可以得出答案.

PHABH,

∴∠PHB=90°,

PEBC,PFCD,

∴∠PEB=PEC=PFC=90°

∵四邊形ABCD是正方形,

AB=BC=CD=AD,1=2=BDC=45°,ABC=C=90°,

∴四邊形BEPH和四邊形PECF是矩形,PE=BE,DF=PF,

∴四邊形BEPH為正方形,

BH=BE=PE=HP,

AH=CE,

∴△AHP≌△FPE,

AP=EF,PFE=BAP,

故①、②正確,

RtPDF中,由勾股定理,得

PD=PF,

PD=CE.

故③正確.

∵點PBD上,

∴當(dāng)AP=AD、PA=PDDA=DPAPD是等腰三角形.

∴△APD是等腰三角形只有三種情況.

故④錯誤,

∴正確的個數(shù)有3個.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點作圖的切線。
已知:P為圓O外一點。
求作:經(jīng)過點P的圓O的切線。

小敏的作法如下:
①連接OP,作線段OP的垂直平分線MN交OP于點C;
②以點C為圓心,CO的長為半徑作圓交圓O于A、B兩點;
③作直線PA、PB,所以直線PA、PB就是所求作的切線。

老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)20+(﹣14)﹣(﹣18)﹣13; (2)﹣2;

(3)(﹣7)×(﹣5)﹣90÷(﹣15) (4)-120×+(-7)×+37×

(5)﹣14﹣(1﹣0.5)××[2-(-3)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與x軸的交點坐標(biāo)是;頂點坐標(biāo)是;
(2)在坐標(biāo)系中利用描點法畫出此拋物線.

x

y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水池有三個流量相同的注排兩用水管,開一個水管一個小時注排水立方米.假設(shè)先開一個進水管注滿半池水,再同時開三個進水管注滿另一半池水;排水時,先用時間開三個水管同時排水,再用時間只開一個水管排水,把池中水排盡,這樣排完一池水所花時間比前面注滿一池水少用個小時,水池的容積是________立方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點ECD的中點,點FBC邊上的一點,且EFAE.求證:AE平分∠DAF.

小林同學(xué)讀題后有一個想法,延長FE,AD交于點M,要證AE平分∠DAF,只需證AMF是等腰三角形即可.請你參考小林的想法,完成此題的證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個直七棱柱,它的底面邊長都是側(cè)棱長是,觀察這個棱柱,請回答下列問題:

這個七棱柱共有多少個面,它們分別是什么形狀?哪些面的形狀、面積完全相同?側(cè)面的面積是多少?由此你可以猜想出棱柱有多少個面?

這個七棱柱一共有多少條棱?它們的長度分別是多少?

這個七棱柱一共有多少個頂點?

通過對棱柱的觀察,你能說出棱柱的頂點數(shù)與的關(guān)系及棱的條數(shù)與的關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點A,B,與函數(shù)y=x的圖象交于點M,點M的橫坐標(biāo)為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)和y=x的圖象于點C,D.

(1)求點A的坐標(biāo);

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從A點出發(fā)向北偏東60°方向走了80m米到達B地,從B地他又向西走了160m到達C地.

(1)用1:4000的比例尺(即圖上1cm等于實際距離40m)畫出示意圖,并標(biāo)上字母;

(2)用刻度尺出AC的距離(精確到0.01cm),并求出C但距A點的實際距離(精確到1m);

(3)用量角器測出C點相對于點A的方位角.

查看答案和解析>>

同步練習(xí)冊答案