【題目】如圖,在矩形ABCD中,,的平分線交邊BC于點(diǎn)E,于點(diǎn)H,連接CH并延長(zhǎng)交邊AB于點(diǎn)F,連接AECF于點(diǎn)O,給出下列命題:

,,其中正確命題的序號(hào)  

A. B. C. D.

【答案】D

【解析】

1)根據(jù)矩形的性質(zhì)得到AD=BC=AB=CDDE平分∠ADC,得到△ADH是等腰直角三角形DEC是等腰直角三角形,得到DE=CD得到等腰三角形DAE,求出∠AED=67.5°,AEB=67.5°,得到(1)正確

2)設(shè)DH=1,AH=DH=1,AD=DE=,求出HE=1,得到2HE1,所以(2)不正確

3)通過(guò)角的度數(shù)求出△AOH和△OEH是等腰三角形,從而得到(3)正確;

4)由△AFH≌△CHE,AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BCBF=(BE+CE)﹣(ABAF)=(CD+EH)﹣(CDEH)=2EH,從而得到(4)不正確

1)在矩形ABCD,AD=BC=AB=CD,ADC=BCD=90°.

DE平分∠ADC,∴∠ADE=CDE=45°.

AHDE,∴△ADH是等腰直角三角形,AD=AHAH=AB=CD

∵△DEC是等腰直角三角形,DE=CDAD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AEH=AEB,所以(1)結(jié)論正確;

2)設(shè)DH=1,AH=DH=1,AD=DE=HE=DEDH=1,2HE=21)=421,所以(2)結(jié)論不正確;

3∵∠AEH=67.5°,∴∠EAH=22.5°.

DH=CD,EDC=45°,∴∠DHC=67.5°,∴∠OHA=180°﹣90°﹣67.5°=22.5°,∴∠OAH=OHA=22.5°,OA=OH,∴∠AEH=OHE=67.5°,OH=OE=OA,OH=AE,所以(3)正確;

4AH=DH,CD=CE.在AFH與△CHE,,∴△AFH≌△CHE,AF=EH.在RtABERtAHE,∴△ABE≌△AHE,BE=EHBCBF=(BE+CE)﹣(ABAF)=(CD+EH)﹣(CDEH)=2EH,所以(4)不正確

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度.他們?cè)谶@棵樹(shù)正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB2米,臺(tái)階AC的坡度為1(即ABBC=1),且BC、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(測(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)為12cm,點(diǎn)P、Q分別是邊BCCA上的動(dòng)點(diǎn),點(diǎn)P、Q分別從頂點(diǎn)BC同時(shí)出發(fā),且它們的速度都為3cm/s

1)如圖1,連接PQ,求經(jīng)過(guò)多少秒后,△PCQ是直角三角形;

2)如圖2,連接AP、BQ交于點(diǎn)M,在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,∠AMQ的大小是否變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

問(wèn)題:如圖(a)所示,已知點(diǎn)為等邊內(nèi)一點(diǎn),且,試探究線段、之間的數(shù)量關(guān)系.

明明同學(xué)的想法是:?jiǎn)栴}中的線段比較分散,可以通過(guò)旋轉(zhuǎn)變換將分散的線段集中在一起,從而解決問(wèn)題.于是他將繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°,得到了,然后連接

請(qǐng)你參考明明同學(xué)的思路,解決下列問(wèn)題:

1)圖(b)中的、之間的數(shù)量關(guān)系為______

2)如圖(c)所示,點(diǎn)在等邊的外部(在直線左側(cè)),滿(mǎn)足,(1)中的結(jié)論仍成立嗎?說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4﹣1).

1)把△ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1,并寫(xiě)出C1的坐標(biāo);

2)以原點(diǎn)O為對(duì)稱(chēng)中心,再畫(huà)出與△A1B1C1關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2,并寫(xiě)出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,把直角三角形紙片沿過(guò)頂點(diǎn)B的直線(BECAE)折疊,直角頂點(diǎn)C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點(diǎn)CAB的中點(diǎn)重合;③點(diǎn)EAB的距離等于CE的長(zhǎng),正確的個(gè)數(shù)是( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某十字路口的汽車(chē),它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車(chē)經(jīng)過(guò)這個(gè)十字路口.

(1)試用樹(shù)形圖或列表法中的一種列舉出這兩輛汽車(chē)行駛方向所有可能的結(jié)果;并計(jì)算兩輛汽車(chē)都不直行的概率.

(2)求至少有一輛汽車(chē)向左轉(zhuǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)八年級(jí)學(xué)生在學(xué)習(xí)等腰三角形的相關(guān)知識(shí)時(shí)時(shí),經(jīng)歷了以下學(xué)習(xí)過(guò)程:

1)(探究發(fā)現(xiàn))如圖1,在中,若平分,時(shí),可以得出,中點(diǎn),請(qǐng)用所學(xué)知識(shí)證明此結(jié)論.

2)(學(xué)以致用)如果和等腰有一個(gè)公共的頂點(diǎn),如圖2,若頂點(diǎn)與頂點(diǎn)也重合,且,試探究線段的數(shù)量關(guān)系,并證明.

3)(拓展應(yīng)用)如圖3,在(2)的前提下,若頂點(diǎn)與頂點(diǎn)不重合,,(2)中的結(jié)論還成立嗎?證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,甲、乙兩名大學(xué)生騎自行車(chē)去距學(xué)校6000米的凈月潭公園.兩人同時(shí)從學(xué)校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時(shí),甲同學(xué)發(fā)現(xiàn)忘記帶學(xué)生證,以1.5a米/分的速度按原路返回學(xué)校,取完學(xué)生證(在學(xué)校取學(xué)生證所用時(shí)間忽略不計(jì)),繼續(xù)以返回時(shí)的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車(chē)的速度始終不變.設(shè)甲、乙兩名大學(xué)生距學(xué)校的路程為s(米),乙同學(xué)行駛的時(shí)間為t(分),s與t之間的函數(shù)圖象如圖所示.

(1)求a、b的值.

(2)求甲追上乙時(shí),距學(xué)校的路程.

(3)當(dāng)兩人相距500米時(shí),直接寫(xiě)出t的值是_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案