【題目】為提升學生的藝術(shù)素養(yǎng),某校計劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學生必須選修且只能選修一門課程,為保證計劃的有效實施,學校隨機對部分學生進行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.
學生選修課程統(tǒng)計表
課程 | 人數(shù) | 所占百分比 |
聲樂 | 14 | |
舞蹈 | 8 | |
書法 | 16 | |
攝影 | ||
合計 |
根據(jù)以上信息,解答下列問題:
(1) , .
(2)求出的值并補全條形統(tǒng)計圖.
(3)該校有1500名學生,請你估計選修“聲樂”課程的學生有多少名.
(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.
【答案】(1)50、28;(2),補全圖形見解析;(3)估計選修“聲樂”課程的學生有420人;(4)所抽取的2人恰好來自同一個班級的概率為.
【解析】
(1)由舞蹈人數(shù)及其所占百分比可得的值,聲樂人數(shù)除以總?cè)藬?shù)即可求出的值;
(2)總?cè)藬?shù)乘以攝影對應(yīng)百分比求出其人數(shù),從而補全圖形;
(3)利用樣本估計總體思想求解可得;
(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽取的2名學生恰好來自同一個班級的結(jié)果數(shù),然后根據(jù)概率公式求解.
(1),,即,
故答案為:50、28;
(2),補全圖形如下:
(3)估計選修“聲樂”課程的學生有(人.
(4)七(1)班的學生記作1,七(2)班的學生記作2,畫樹狀圖為:
∴共有12種等可能的結(jié)果數(shù),其中抽取的2名學生恰好來自同一個班級的結(jié)果數(shù)為4,
則所抽取的2人恰好來自同一個班級的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形A1B1C1D1,D1E1E2B2,A2B2C2D2,D2E3E4B3,A3B3C3D3…,按如圖所示的方式放置,其中點B1在y軸上,點C1,E1,E2,C2,E3,E4,C3,…,在x軸上,已知正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……,則正方形A2018B2018C2018D2018邊長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張華為了測量重慶最高塔樓的高度,他從塔樓底部出發(fā),沿廣場前進185米至點,繼而沿坡度為的斜坡向下走65米到達碼頭,然后在浮橋上繼續(xù)前行110米至躉船,在處小明操作一架無人勘測機,當無人勘測機飛行至點的正上方點時,測得碼頭的俯角為,樓頂的仰角為,點在同一平面內(nèi),則塔樓的高度約為( )(結(jié)果精確到1米,參考數(shù)據(jù):,,)
A.319米B.335米C.342米D.356米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從點看一山坡上的電線桿,觀測點的仰角是,向前走到達點, 測得頂端點和桿底端點的仰角分別是和,則該電線桿的高度( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的正方形中,動點分別以相同的速度從兩點同時出發(fā)向點和點運動(任何一個點到達即停止),連接與交于點,過點作交于點交于點,連接,則線段的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點的直線與直線相交于點,動點沿路線運動.
(1)求直線的解析式;
(2)設(shè)的面積,點的橫坐標為,求出與的關(guān)系式;
(3)是否存在點,使是直角三角形?若存在,直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2個A種工藝品和3個B種工藝品需花費520元.
(1)求A,B兩種工藝品的單價;
(2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?
(3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com