【題目】某中學(xué)計(jì)劃為學(xué)?萍蓟顒(dòng)小組購(gòu)買型、型兩種型號(hào)的放大鏡.若購(gòu)買8個(gè)型放大鏡和5個(gè)型放大鏡需用235元,購(gòu)買4個(gè)型放大鏡和6個(gè)型放大鏡需用170元.
(1)求每個(gè)型放大鏡和每個(gè)型故大鏡各多少元?
(2)該中學(xué)決定購(gòu)買型放大鏡和型放大鏡共75個(gè),總費(fèi)用不超過1300元,那么最多可以購(gòu)買多少個(gè)型放大鏡?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ∠B、∠D的兩邊分別平行。
(1)在圖1中,∠B與∠D的數(shù)量關(guān)系是 ;在圖2中,∠B與∠FDC的數(shù)量關(guān)系是 ;
(2)用一句話歸納的結(jié)論為: ;
(3)已知∠α的兩邊與∠β的兩邊分別平行,并且∠α比∠β的3倍少,求∠α、∠β的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,拋物線y=﹣x2﹣x+3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)是(0,﹣1),連接BC、AC
(1)求出直線AD的解析式;
(2)如圖2,若在直線AC上方的拋物線上有一點(diǎn)F,當(dāng)△ADF的面積最大時(shí),有一線段MN=(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動(dòng),首尾順次連接點(diǎn)A、M、N、F構(gòu)成四邊形AMNF,請(qǐng)求出四邊形AMNF的周長(zhǎng)最小時(shí)點(diǎn)N的橫坐標(biāo);
(3)如圖3,將△DBC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)α°(0<α°<180°),記旋轉(zhuǎn)中的△DBC為△DB′C′,若直線B′C′與直線AC交于點(diǎn)P,直線B′C′與直線DC交于點(diǎn)Q,當(dāng)△CPQ是等腰三角形時(shí),求CP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點(diǎn)H,過點(diǎn)C作CD⊥AC,連接AD,點(diǎn)M為AC上一點(diǎn),且AM=CD,連接BM交AH于點(diǎn)N,交AD于點(diǎn)E.
(1)若AB=3,AD=,求△BMC的面積;
(2)點(diǎn)E為AD的中點(diǎn)時(shí),求證:AD=BN .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,點(diǎn)在邊上移動(dòng)(點(diǎn)不與點(diǎn), 重合),滿足,且點(diǎn)、分別在邊、上.
()求證: .
()當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D,E分別在直角邊AC,BC上,且∠DOE=90°,DE交OC于點(diǎn)P.則下列結(jié)論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
如圖1,已知點(diǎn)A是BC外一點(diǎn),連接AB,AC,求∠BAC+∠B+∠C的度數(shù).
(1)閱讀并補(bǔ)充下面推理過程
解:過點(diǎn)A作ED∥BC
∴∠B=∠ ,∠C=∠ .
又∵∠EAB+∠BAC+∠DAC=180°(平角定義)
∴∠B+∠BAC+∠C=180°
從上面的推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關(guān)系,使問題得以解決
(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).
小明受到啟發(fā),過點(diǎn)C作CF∥AB如圖所示,請(qǐng)你幫助小明完成解答:
(3)已知AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點(diǎn)E,點(diǎn)E在AB與CD兩條平行線之間.
①如圖3,點(diǎn)B在點(diǎn)A的左側(cè),若∠ABC=60°,則∠BED的度數(shù)為 °.
②如圖4,點(diǎn)B在點(diǎn)A的右側(cè),且AB<CD,AD<BC.若∠ABC=n°,則∠BED的度數(shù)為 °(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC 中,AD 是∠BAC 的平分線,且 AD=AB,過點(diǎn) C 作 AD 的垂線,交 AD 的延長(zhǎng)線于點(diǎn) H.
(1)如圖 1,若∠BAC=60°.
①直接寫出∠B 和∠ACB 的度數(shù);
②若 AB=2,求 AC 和 AH 的長(zhǎng);
(2)如圖 2,用等式表示線段 AH 與 AB+AC 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com