【題目】已知,如圖△ABC中,∠ABC=45°,AB=BC,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F.H是BC邊的中點,連接DH與BE相交于點G,
(1)求證BF=AC;
(2)求證CE=BF.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得到BD=CD,證明△BDF≌△CDA,根據(jù)全等三角形的性質(zhì)即可得到BF=AC;
(2)證明△ABE≌△CBE,根據(jù)全等三角形的性質(zhì)得到,等量代換得到BF=2CE;
證明:(1)∵∠ABC=45°,CD⊥AB于D,
∴△BCD是等腰直角三角形,H是BC邊的中點,
∴BD=CD,
∵CD⊥AB于D,BE⊥AC于E,
∴∠DBF+∠A=90°,∠ACD+∠A=90°,
∴∠DBF=∠ACD,
在△BDF與△CDA中,,
∴△BDF≌△CDA(ASA),
∴BF=AC;
(2)∵BE平分∠ABC,且BE⊥AC于E,
∴∠ABE=∠CBE,∠AEB=∠CEB=90°,
∴在△ABE與△CBE中,
∴△ABE≌△CBE(ASA),
∴BF=2CE,
即.
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調(diào)查他們每天自主學習的時間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:
(1)本次調(diào)查的學生人數(shù)是 人;
(2)圖2中α是 度,并將圖1條形統(tǒng)計圖補充完整;
(3)請估算該校九年級學生自主學習時間不少于1.5小時有 人;
(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經(jīng)驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y═﹣x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B的坐標為(3,0),點C的坐標為(0,5).有一寬度為1,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線AC于點M和點N,交x軸于點E和點F.
(1)求拋物線的解析式及點A的坐標;
(2)當點M和N都在線段AC上時,連接MF,如果sin∠AMF=,求點Q的坐標;
(3)在矩形的平移過程中,是否存在以點P,Q,M,N為頂點的四邊形是平行四邊形,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=10,∠C=90°,點O在AC邊上,且CO=2,點P在BC邊上,連接OP繞點O逆時針旋轉(zhuǎn)90°,使得點P落在AB邊上的點D處,則CP的長是_________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,OA=2,OB=4,以A點為頂點、AB為腰在第三象限作等腰Rt△ABC,
(1)求C點的坐標;
(2)如圖2,P為y軸負半軸上一個動點,當P點向y軸負半軸向下運動時,以P為頂點,PA為腰作等腰Rt△APD,過D作DE⊥x軸于E點,求OPDE的值;
(3)如圖3,已知點F坐標為(2,2),當G在y軸的負半軸上沿負方向運動時,作Rt△FGH,始終保持∠GFH=90,FG與y軸負半軸交于點G(0,m),FH與x軸正半軸交于點H(n,0),當G點在y軸的負半軸上沿負方向運動時,以下兩個結(jié)論:①mn為定值;②m+n為定值,其中只有一個結(jié)論是正確的,請找出正確的結(jié)論,并求出其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別從A、B兩地同時出發(fā),相向而行,勻速前往B地、A地,兩人相遇時停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時間x(min)之間的函數(shù)關系如圖所示.有下列說法:
①A、B之間的距離為1200m; ②乙行走的速度是甲的1.5倍;③ b=960; ④ a=34.
以上結(jié)論正確的有( )
A. ①② B. ①②③ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)請直接寫出不等式kx+b>3x中x的范圍.
(3)若點D在y軸上,且滿足S△BCD=2S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y﹣3與3x+2正比例,且x=2時,y=5
(1)求y與x之間的函數(shù)關系式,并指出它是什么函數(shù);
(2)點(4,6)是否在這個函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長分別為, , ,求這個三角形的面積.小明同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長分別為, , ,請在圖2的正方形網(wǎng)格中畫出相應的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com