精英家教網 > 初中數學 > 題目詳情

【題目】已知平面內一點P,若點P到兩條相交直線l1和l2的距離都相等,且距離均為h(h>0),則稱點P叫做直線l1和l2的“h距離點”. 例如圖1所示,直線l1和l2互相垂直,交于O點,平面內一點P到兩直線的距離都是2,則稱點P叫做直線l1和l2的“2距離點”.

(1)若直線l1和l2互相垂直,且交于O點,平面內一點P是直線l1和l2的“7距離點”,直接寫出OP的長度為

(2)如圖2所示,直線l1和l2相交于點O,夾角為60°,已知平面內一點P是直線l1和l2的“3距離點”,求出OP的長度;

(3)已知三條直線兩兩相交后形成一個等邊三角形,如圖3所示,在等邊△ABC中,點P是三角形內部一點,且點P分別是等邊△ABC三邊所在直線的“距離點”,請你直接寫出△ABC的面積是 .

【答案】(1) (2)6或 (3)

【解析】

1)根據勾股定理求解即可;

2)分點P在銳角內部和P在鈍角內部兩種情況求解即可;

3)由題意知,點P是三個角平分線的交點,根據等邊三角形的性質和勾股定理求出三角形的邊長,即可求出三角形的面積.

(1)

(2)當點P在銳角內部時,

,

,

,

,

,

;

當點P在鈍角內部時.

,

,

,

,

(負值舍去)

綜上所述,OP的長為6或

(3)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若正整數 使得在計算 的過程中,各數位不產生進位現(xiàn)象,則稱 為“本位數.現(xiàn)從所有大于0,且小于100的“本位數”中,隨機抽取一個數,抽到偶數的概率為= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°AB=AC,直線m經過點A,BD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3,DED、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,E是圓內的兩條弦AB、CD的交點,直線EF∥CB,交AD的延長線于F,F(xiàn)G切圓于G.連接AG、DG.

求證:
(1)△DFE∽△EFA
(2)EF=FG

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā)沿圖中某一個扇形順時針勻速運動,設∠APB=y(單位:度),如果y與點P運動的時間x(單位:秒)的函數關系的圖象大致如圖2所示,那么點P的運動路線可能為( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“有趣三角形”,這條中線稱為“有趣中線”。如圖,在三角形ABC中,∠C=90°,較短的一條直角邊BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中線”的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為CD上一點,連結AE,BD,且AE,BD交于點F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】王華在學習相似三角形時,在北京市義務教育課程改革實驗教材第17冊書,第31頁遇到這樣一道題:
如圖1,在△ABC中,P是邊AB上的一點,聯(lián)結CP.

要使△ACP∽△ABC,還需要補充的一個條件是__,或__.
(1)王華補充的條件是 , 或
(2)請你參考上面的圖形和結論,探究、解答下面的問題:
如圖2,在△ABC中,∠A=30°,AC2= AB2+AB.BC.
求∠C的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:若m22mn+2n28n+16=0,求m、n的值.

解:∵m22mn+2n28n+16=0,∴(m22mn+n2)+(n28n+16)=0

∴(mn2+(n﹣4)2=0,∴(mn2=0,(n﹣4)2=0,∴n=4,m=4

根據你的觀察,探究下面的問題:

(1)a2+b24a+4=0,則a=  b=  

(2)已知x2+2y22xy+6y+9=0,求xy的值.

(3)已知ABC的三邊長ab、c都是正整數,且滿足2a2+b24a6b+11=0,求ABC的周長

查看答案和解析>>

同步練習冊答案