【題目】如圖,△ABC中,AB=AC,BE⊥AC于E,且D、E分別是AB、AC的中點(diǎn).延長(zhǎng)BC至點(diǎn)F,使CF=CE.
(1)求∠ABC的度數(shù);
(2)求證:BE=FE;
(3)若AB=2,求△CEF的面積.
【答案】(1) ∠ABC=60°;(2)證明見(jiàn)解析;(3).
【解析】
試題分析:(1)根據(jù)等邊三角形的判定得出△ABC是等邊三角形,即可得出∠ABC的度數(shù);
(2)根據(jù)BE=FE得出∠F=∠CEF=30°,再等邊三角形的性質(zhì)得出∠EBC=30°,即可證明;
(3)過(guò)E點(diǎn)作EG⊥BC,根據(jù)三角形面積解答即可.
試題解析:(1)∵BE⊥AC于E,E是AC的中點(diǎn),
∴△ABC是等腰三角形,即AB=BC,
∵AB=AC,
∴△ABC是等邊三角形,
∴∠ABC=60°;
(2)∵CF=CE,
∴∠F=∠CEF,
∵∠ACB=60°=∠F+∠CEF,
∴∠F=30°,
∵△ABC是等邊三角形,BE⊥AC,
∴∠EBC=30°,
∴∠F=∠EBC,
∴BE=EF;
(3)過(guò)E點(diǎn)作EG⊥BC,如圖:
∵BE⊥AC,∠EBC=30°,AB=BC=2,
∴BE=,CE=1=CF,
在△BEC中,EG=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】月球距離地球約為3.84×105千米,一架飛機(jī)速度為8×102千米/時(shí),若坐飛機(jī)飛行這么遠(yuǎn)的距離需 _________ 小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個(gè)單位得到△A′B′C′.
(1)補(bǔ)全△A′B′C′,利用網(wǎng)格點(diǎn)和直尺畫(huà)圖;
(2)圖中AC與A1C1的關(guān)系是: ;
(3)畫(huà)出AB邊上的高線CD;
(4)畫(huà)出△ABC中AB邊上的中線CE;
(5)△BCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán).被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹(shù)狀圖或列表法求出小穎參加比賽的概率;
(2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正多邊形的一個(gè)內(nèi)角的度數(shù)恰好等于它的外角的度數(shù)的3倍,則這個(gè)多邊形的邊數(shù)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人同時(shí)開(kāi)始采摘櫻桃,甲平均每小時(shí)采摘8公斤櫻桃,乙平均每小時(shí)采摘7公斤櫻桃。采摘同時(shí)結(jié)束后,甲從他采摘的櫻桃中取出1公斤給了乙,這時(shí)兩人的櫻桃一樣多。他們采摘櫻桃用了多長(zhǎng)時(shí)間?設(shè)他們采摘了x小時(shí),則下面所列方程中正確的是( )
A. 8x-1=7x+1 B. 8x-1=7x C. 8x+l=7x D. 8x+l=7x-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若三角形兩邊長(zhǎng)分別是4、5,則周長(zhǎng)c的范圍是( 。
A. 1<c<9 B. 9<c<14 C. 10<c<18 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上林老師出示了問(wèn)題:如圖,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,點(diǎn)E是邊BC的中點(diǎn),且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.
同學(xué)們作了一步又一步的研究:
(1)、經(jīng)過(guò)思考,小明展示了一種解題思路:如圖1,取AB的中點(diǎn)M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,小明的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由;
(2)、小穎提出一個(gè)新的想法:如圖2,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,小穎的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由;
(3)、小華提出:如圖3,點(diǎn)E是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.小華的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com