【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,的頂點都在格點上,建立平面直角坐標(biāo)系,

1)點A的坐標(biāo)為______,點C的坐標(biāo)為______;

2)將先向右平移2個單位長度,再向下平移3個單位長度,請畫出平移后的,并分別寫出點A1B1、C1的坐標(biāo);

3)求的面積.

0

【答案】1,;(2)圖見解析,;(3

【解析】

1)直接根據(jù)點A、C在平面直角坐標(biāo)系中的位置即可得;

2)先根據(jù)點坐標(biāo)的平移變化規(guī)律得出點的坐標(biāo),再描點、順次連接即可得;

3)如圖(見解析),利用大長方形的面積減去三個直角三角形的面積即可得.

1)由點A、C在平面直角坐標(biāo)系中的位置得:點A的坐標(biāo)為,點C的坐標(biāo)為

故答案為:,

2)由點B在平面直角坐標(biāo)系中的位置得:點B的坐標(biāo)為

由點坐標(biāo)的平移變化規(guī)律得:

再描點、順次連接即可得到,如圖所示:

3)由點的坐標(biāo)得:

的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)在AC上且AE=CF,
證明:DE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:

(1)如果AB=AC,∠BAC=90°
①當(dāng)點D在線段BC上時(與點B不重合),如圖2,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為
②當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,為什么?
(2)如圖4,如果AB≠AC,∠BAC≠90°,點D在線段BC上運動.且AC=4 ,BC=3,∠BCA=45°,正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則OACBAD的面積之差SOACSBAD為(  )

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小穎往表姐家打長途電話的收費記錄:

通話時間x(分鐘)

1

2

3

4

5

6

7

電話費y()

3

3

3

3.6

4.2

4.8

5.4

1)上表的兩個變量中, 是自變量, 是因變量;

2)寫出yx之間的關(guān)系式;

3)若小穎的通話時間是15分鐘,則需要付多少電話費?

4)若小穎有24元錢,則她最多能打多少分鐘電話?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作⊙O,過點P作⊙O的切線,交AD于點F,切點為E.

(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點G,連接OE并延長交直線DC于H(圖2),問是否存在點P,使△EFO∽△EHG(E、F、O與E、H、G為對應(yīng)點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點E,若∠COB=3∠AOB,OC=2 ,則圖中陰影部分面積是(結(jié)果保留π和根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A,B為切點,∠OAB=30度.

(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛為調(diào)查某校七年級學(xué)生對某一節(jié)目的了解程度,用簡單隨機抽樣的辦法抽取了該年級的一個班進(jìn)行調(diào)查統(tǒng)計.A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

1)求該班共有多少名學(xué)生.

2)在條形圖中,將表示“一般了解”的部分補充完整.

3)如果全年級共400名同學(xué),請你估算全年級對這一節(jié)目“了解較多”的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案