【題目】如圖在平面直角坐標(biāo)系中拋物線經(jīng)過A(2,0),B(0,4)兩點,將△OAB繞點O逆時針旋轉(zhuǎn)90°得到△OCD,點D在拋物線上.
(1)求該拋物線的表達(dá)式;
(2)已知點M在y軸上(點M不與點B重合),連接AM,若△AOM與△AOB相似,試求點M的坐標(biāo).
【答案】(1)y=-(x-2)(x+4)或y=-x2-x+4;(2)(0,-4)或(0,1)或(0,-1).
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到點D的坐標(biāo),然后利用待定系數(shù)法確定函數(shù)解析式;
(2)由于△AOM與△AOB相似且∠AOB=∠AOM=90°.所以應(yīng)該分兩種情況:①若=,即=;②=,即=,通過比例式求得符合條件的m的值即可.
(1)由旋轉(zhuǎn)的性質(zhì)可得:OD=OB=4,則D(-4,0).
由拋物線經(jīng)過點A(2,0),D(-4,0).可設(shè)y=a(x-2)(x+4)(a≠0).
把B(0,4)代入,得4=a(0-2)(0+4).
解得a=-.
故該拋物線解析式為y=-(x-2)(x+4)或y=-x2-x+4.
(2)由題意知,OA=2,OB=4,
設(shè)M(0,m),如圖所示,
∵△AOM與△AOB相似且∠AOB=∠AOM=90°,
∴分兩種情況.
①若=,即=,
解得m=±4,
∵點M不與點B重合,
∴m=-4符合題意,此時M1(0,-4);
②=,即=,
解得m=±1,
此時M2(0,1),M2(0,-1),
綜上所述,符合條件的點M的坐標(biāo)是:(0,-4)或(0,1)或(0,-1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,半圓O的直徑AB=4,=,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD= 時,四邊形AODC是菱形;
(3)當(dāng)AD= 時,四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點和矩形的邊都在直線上,以點為圓心,以24為半徑作半圓,分別交直線于兩點.已知: ,,矩形自右向左在直線上平移,當(dāng)點到達(dá)點時,矩形停止運動.在平移過程中,設(shè)矩形對角線與半圓的交點為 (點為半圓上遠(yuǎn)離點的交點).
(1)如圖2,若與半圓相切,求的值;
(2)如圖3,當(dāng)與半圓有兩個交點時,求線段的取值范圍;
(3)若線段的長為20,直接寫出此時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中有5個點:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).
(1)畫出△ABC的外接圓⊙P,并指出點D與⊙P相的位置關(guān)系;
(2)E點是y軸上的一點,若直線DE與⊙P相切,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用水,采用分段計費的方法按月計算每戶家庭的水費,月用水量不超過20時,按2元/計費;月用水量超過20時,其中的20仍按2元/收費,超過部分按元/計費.設(shè)每戶家庭用用水量為時,應(yīng)交水費元.
(1)分別求出和時與的函數(shù)表達(dá)式;
(2)小明家第二季度交納水費的情況如下:
月份 | 四月份 | 五月份 | 六月份 |
交費金額 | 30元 | 34元 | 42.6元 |
小明家這個季度共用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Q是上一定點,P是弦AB上一動點,C為AP中點,連接CQ,過點P作交于點D,連接AD,CD.
已知,設(shè)A,P兩點間的距離為,C,D兩點間的距離為.
(當(dāng)點P與點A重合時,令y的值為1.30)
小榮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探宄.
下面是小榮的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點、畫圖、測量,得到了y與x的幾組對應(yīng)值:
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各組對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)時,AP的長度約為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小蘭用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點DE為圓心,大于DE的一半長為半徑作弧兩弧交于F;
②作射線BF,交邊AC于點H;
③以B為圓心,BK長為半徑作弧,交直線AC于點D和E;
④取一點K使K和B在AC的兩側(cè);
所以BH就是所求作的高.其中順序正確的作圖步驟是( 。
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(t,0),B(t+,0),對于線段AB和點P給出如下定義:當(dāng)∠APB=90°時,稱點P為線段AB的“直角視點”.
(1)若t=﹣,在點C(0,),D(﹣1,),E(,)中,能夠成為線段AB“直角視點”的是 .
(2)直線MN分別交x軸、y軸于點M、N,點M的坐標(biāo)是(,0),∠OMN=30°.
①線段AB的“直角視點”P在直線MN上,且∠ABP=60°,求點P的坐標(biāo).
②在①的條件下,記Q為直線MN上的動點,在點Q的運動過程中,△QAB的周長存在最小值,試求△QAB周長的最小值 .
③若線段AB的所有“直角視點”都在△MON內(nèi)部,則t的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com