【題目】如圖,Q是上一定點,P是弦AB上一動點,C為AP中點,連接CQ,過點P作交于點D,連接AD,CD.
已知,設A,P兩點間的距離為,C,D兩點間的距離為.
(當點P與點A重合時,令y的值為1.30)
小榮根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行了探宄.
下面是小榮的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,得到了y與x的幾組對應值:
(2)建立平面直角坐標系,描出以補全后的表中各組對應值為坐標的點,畫出該函數的圖象;
(3)結合函數圖象,解決問題:當時,AP的長度約為__________cm.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于某一函數給出如下定義:若存在實數p,當其自變量為p時,其函數值等于p,則稱p為這個函數的不變值,在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.
(1)判斷函數y=有沒有不變值?如果有,直接寫出其不變長度.
(2)函數y=3x2-bx.
①若其不變長度為零,求b的值;
②若2≤b≤5,求其不變長度q的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在平面直角坐標系中拋物線經過A(2,0),B(0,4)兩點,將△OAB繞點O逆時針旋轉90°得到△OCD,點D在拋物線上.
(1)求該拋物線的表達式;
(2)已知點M在y軸上(點M不與點B重合),連接AM,若△AOM與△AOB相似,試求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且BC是⊙O的切線.
(1)求證:CE=CB;
(2)連接AF,BF,求∠ABF的正弦值;
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個一元二次方程,,其中,下列四個結論中,錯誤的是( )
A. 如果方程有兩個不相等的實數根,那么方程也有兩個不相等的實數根
B. 時,方程和方程有一個相同的根,那么這個根必是
C. 如果是方程的一個根,那么是方程的一個根
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=k1x+b與反比例函數y=的圖象交于A(2,m),B(-3,﹣2)兩點.
(1)求m的值;
(2)根據所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數y=圖象上的兩點, 且y1>y2,求實數p的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過軸正半軸上的任意一點,作軸的平行線,分別與反比例函數和的圖象交于點和點,點是軸上一點,連接、,則的面積為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器銷售商到廠家選購A、B兩種型號的液晶電視機,用30000元可購進A型電視10臺,B型電視機15臺;用30000元可購進A型電視機8臺,B型電視機18臺.
(1)求A、B兩種型號的液晶電視機每臺分別多少元?
(2)若該電器銷售商銷售一臺A型液晶電視可獲利800元,銷售一臺B型液晶電視可獲利500元,該電器銷售商準備用不超過40000元購進A、B兩種型號液晶電視機共30臺,且這兩種液晶電視機全部售出后總獲利不低于20400元,問:有幾種購買方案?在這幾種購買方案中,哪種方案獲利最多?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com