【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k≠0)的圖象交于A(1,a)、B(b,1)兩點.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo);
(3)在(2)的條件下,求△PAB的面積.
【答案】(1);(2)點P的坐標(biāo)為;(3)S△PAB=.
【解析】
(1)先確定A點坐標(biāo),然后代入反比例函數(shù)解析式,利用待定系數(shù)法求解即可;
(2)先求出B點坐標(biāo),然后找到點B關(guān)于x軸的對稱點D,連接AD,交x軸于點P,則P點即為滿足條件的點,利用待定系數(shù)法求出直線AD的解析式,令y=0,繼而可求得點P坐標(biāo);
(3)由三角形面積公式根據(jù)S△PAB=S△ABD-S△BDP列式計算即可.
(1)當(dāng)x=1時,y=﹣x+4=3,即a= 3,
∴點A的坐標(biāo)為(1,3),
將點A(1,3)代入y=中,
3=,解得:k=3,
∴反比例函數(shù)的表達(dá)式為y=;
(2)y=﹣x+4,當(dāng)y= 1時,1=-x+4,x=3,即b=3,
∴點B的坐標(biāo)為(3,1),
作點B關(guān)于x軸的對稱點D,連接AD,交x軸于點P,此時PA+PB的值最小,如圖所示,
∵點B的坐標(biāo)為(3,1),
∴點D的坐標(biāo)為(3,-1),
設(shè)直線AD的函數(shù)表達(dá)式為y=mx+n,
將點A(1,3)、D(3,-1)代入y=mx+n中,
,解得:,
∴直線AD的函數(shù)表達(dá)式為y=-2x+5,
當(dāng)y=-2x+5=0時,,
∴點P的坐標(biāo)為(,0);
(3)S△PAB=S△ABD-S△BDP=×2×2-×2×=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,相距5km的A、B兩地間有一條筆直的馬路,C地位于AB兩地之間且距A地2km,小明同學(xué)騎自行車從A地出發(fā)沿馬路以每小時5km的速度向B地勻速運動,當(dāng)?shù)竭_(dá)B地后立即以原來的速度返回。到達(dá)A地停止運動,設(shè)運動時間為t(小時).小明的位置為點P、若以點C為坐標(biāo)原點,以從A到B為正方向,用1個單位長度表示1km,解答下列各問:
(1)指出點A所表示的有理數(shù);
(2)求t =0.5時,點P表示的有理數(shù);
(3)當(dāng)小明距離C地1km時,直接寫出所有滿足條件的t值;
(4)在整個運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);
(5)用含t的代數(shù)式表示點P表示的有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個點,分別對應(yīng)的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個解(a<b),且(c﹣12)2與|d﹣16|互為相反數(shù).
(1)填空:a= 、b= 、c= 、d= ;
(2)若線段AB以3個單位/秒的速度向右勻速運動,同時線段CD以1單位長度/秒向左勻速運動,并設(shè)運動時間為t秒,A、B兩點都運動在CD上(不與C,D兩個端點重合),若BD=2AC,求t得值;
(3)在(2)的條件下,線段AB,線段CD繼續(xù)運動,當(dāng)點B運動到點D的右側(cè)時,問是否存在時間t,使BC=3AD?若存在,求t得值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于Q.
(1)求證:四邊形PBQD是平行四邊形;
(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向D運動(不與D重合),設(shè)點P運動時間為t秒.
①請用t表示PD的長;②求t為何值時,四邊形PBQD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F.
(1)如圖①,當(dāng)點D落在BC邊上時,求點D的坐標(biāo);
(2)如圖②,當(dāng)點D落在線段BE上時,AD與BC交于點H.
①求證△ADB≌△AOB;
②求點H的坐標(biāo).
(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點A,B,C表示的數(shù)分別是-6,10,12.點A以每秒3個單位長度的速度向右運動,同時線段BC以每秒1個單位長度的速度也向右運動.
(1)運動前線段AB的長度為________;
(2)當(dāng)運動時間為多長時,點A和線段BC的中點重合?
(3)試探究是否存在運動到某一時刻,線段AB=AC?若存在,求出所有符合條件的點A表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,AD是△ABC的角平分線,DE⊥AB于E,DF⊥AC于F,則下列四個結(jié)論中:①DE=DF;②AD上任意一點到AB,AC的距離相等;③∠BDE=∠CDF;④BD=CD且AD⊥BC,其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com