【題目】如圖,∠ABC=90°,O為射線BC上一點,以點O為圓心, OB長為半徑作⊙O,將射線BA繞點B按順時針方向旋轉(zhuǎn)至BA′,若BA′與⊙O相切,則旋轉(zhuǎn)的角度α(0°<α<180°)等于 .
【答案】60°或120°
【解析】解:如圖;
①當BA′與⊙O相切,且BA′位于BC上方時,設(shè)切點為P,連接OP,則∠OPB=90°;
Rt△OPB中,OB=2OP,
∴∠A′BO=30°;
∴∠ABA′=60°;
②當BA′與⊙O相切,且BA′位于BC下方時;
同①,可求得∠A′BO=30°;
此時∠ABA′=90°+30°=120°;
故旋轉(zhuǎn)角α的度數(shù)為60°或120°.
【考點精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點,需要掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的分式方程.
(1)若方程的增根為x=2,求a的值;
(2)若方程有增根,求a的值;
(3)若方程無解,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)把這個二次函數(shù)化成y=a(x﹣h)2+k的形式;
(2)寫出二次函數(shù)的對稱軸和頂點坐標;
(3)求二次函數(shù)與x軸的交點坐標;
(4)畫出這個二次函數(shù)的圖象;
(5)觀察圖象并寫出y隨x增大而減小時自變量x的取值范圍.
(6)觀察圖象并寫出當x為何值時,y>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,將矩形ABCD繞點D順時針旋轉(zhuǎn)90°得到矩形A′B′C′D′,則點B經(jīng)過的路徑與BA,AC′,C′B′所圍成封閉圖形的面積是多少?(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣8mx+16m﹣1(m>0)與x軸的交點分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個不同的交點;
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點C(2,0),D(5,0),若拋物線y=mx2﹣8mx+16m﹣1(m>0)與線段CD有交點,請寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交點坐標是(0,3).
(1)求出m的值并畫出這條拋物線;
(2)求拋物線與x軸的交點和拋物線頂點的坐標;
(3)當x取什么值時,y的值隨x值的增大而減?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(2,3),B(1,1),C(4,1),M(6,3).
(1)將△ABC平原得到△A1B1C1 , 其中點A,B,C的對應點分別是A1 , B1 , C1 , 且點A1的坐標是(3,6),在圖中畫出△A1B1C1 .
(2)將(1)中的△A1B1C1繞點M順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2(其中點A2 , B2 , C2的對應點分別是A1 , B1 , C1),并寫出點A2 , B2 , C2的坐標.
(3)(2)中的△A2B2C2能通過旋轉(zhuǎn)△ABC得到嗎?若能,請寫出旋轉(zhuǎn)的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x= ,且經(jīng)過點(2,0),下列說法: ①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是拋物線上的兩點,則y1<y2 ,
其中說法正確的是( )
A.①②④
B.③④
C.①③④
D.①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com