【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)把這個(gè)二次函數(shù)化成y=a(x﹣h)2+k的形式;
(2)寫出二次函數(shù)的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)求二次函數(shù)與x軸的交點(diǎn)坐標(biāo);
(4)畫出這個(gè)二次函數(shù)的圖象;
(5)觀察圖象并寫出y隨x增大而減小時(shí)自變量x的取值范圍.
(6)觀察圖象并寫出當(dāng)x為何值時(shí),y>0.
【答案】
(1)解:y=x2﹣4x+3=(x﹣2)2﹣1,則該拋物線解析式是y=(x﹣2)2﹣1
(2)解:由(1)知,該拋物線解析式為:y=(x﹣2)2﹣1,
所以對(duì)稱軸是直線x=2,頂點(diǎn)坐標(biāo)為(2,﹣1)
(3)解:∵二次函數(shù)y=x2﹣4x+3=(x﹣1)(x﹣3),
∴二次函數(shù)與x軸的交點(diǎn)坐標(biāo)分別是:(1,0)(3,0)
(4)解:其圖象如圖所示:
(5)解:由圖象知,當(dāng)y隨x增大而減小時(shí)x≤2
(6)解:由圖象知,當(dāng)x<1或x>3時(shí),y>0
【解析】(1)利用配方法先提出二次項(xiàng)系數(shù),再加上一次項(xiàng)系數(shù)的一半的平方來湊完全平方式,把一般式轉(zhuǎn)化為頂點(diǎn)式.(2)根據(jù)(1)中的二次函數(shù)解析式直接寫出答案;(3)將已知函數(shù)解析式轉(zhuǎn)化為兩點(diǎn)式方程即可得到答案;(4)根據(jù)頂點(diǎn)坐標(biāo),拋物線與y軸的交點(diǎn)坐標(biāo)以及拋物線與x軸的交點(diǎn)坐標(biāo)畫出圖象;(5)(6)根據(jù)圖象寫出x的取值范圍.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把菱形ABOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到菱形DFOE,則下列角中不是旋轉(zhuǎn)角的為( )
A.∠BOF
B.∠AOD
C.∠COE
D.∠COF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊三角形ABC的邊長(zhǎng)為12,點(diǎn)P為AC上一點(diǎn),點(diǎn)D在CB的延長(zhǎng)線上,且BD=AP,連接PD交AB于點(diǎn)E,PE⊥AB于點(diǎn)F,則線段EF的長(zhǎng)為( )
A. 6 B. 5
C. 4.5 D. 與AP的長(zhǎng)度有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,D、E、 F分別是△ABC的三邊的延長(zhǎng)線上一點(diǎn),且AB=BF,BC=CD,AC=AE,=5cm2,則的值是( )
A. 15 cm2 B. 20 cm2 C. 30 cm2 D. 35 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=90°,O為射線BC上一點(diǎn),以點(diǎn)O為圓心, OB長(zhǎng)為半徑作⊙O,將射線BA繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)至BA′,若BA′與⊙O相切,則旋轉(zhuǎn)的角度α(0°<α<180°)等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣2,2),B(﹣3,﹣2)
(1)若點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,則點(diǎn)C的坐標(biāo)為 ;
(2)將點(diǎn)A向右平移5個(gè)單位得到點(diǎn)D,則點(diǎn)D的坐標(biāo)為 ;
(3)由點(diǎn)A,B,C,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個(gè)橫、縱坐標(biāo)均為整數(shù)的點(diǎn),求所取的點(diǎn)橫、縱坐標(biāo)之和恰好為零的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com