1.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分線(xiàn)EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周,即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒.當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值;
②若點(diǎn)P、Q的速度分別為v1、v2(cm/s),點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試探究a與b滿(mǎn)足的數(shù)量關(guān)系.

分析 (1)先證明四邊形ABCD為平行四邊形,再根據(jù)對(duì)角線(xiàn)互相垂直平分的平行四邊形是菱形作出判定,根據(jù)勾股定理即可求AF的長(zhǎng);
(2)①分情況討論可知,P點(diǎn)在BF上,Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;
②由①的結(jié)論用v1、v2表示出A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí)所需的時(shí)間,計(jì)算即可.

解答 (1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE.
∵EF垂直平分AC,
∴OA=OC.
∵在△AOE和△COF中,
$\left\{\begin{array}{l}{∠CAD=∠ACB}\\{∠AEF=∠CFE}\\{OA=OC}\end{array}\right.$,
∴△AOE≌△COF(AAS),
∴OE=OF.
∵EF⊥AC,
∴四邊形AFCE為菱形.
設(shè)菱形的邊長(zhǎng)AF=CF=xcm,則BF=(8-x)cm,
在Rt△ABF中,AB=4cm,由勾股定理得:AB2+BF2=AF2,
即42+(8-x)2=x2
解得:x=5,
∴AF=5;
(2)①解:根據(jù)題意得,P點(diǎn)AF上時(shí),Q點(diǎn)CD上,此時(shí)A,C,P,Q四點(diǎn)不可能構(gòu)成平行四邊形;
同理P點(diǎn)AB上時(shí),Q點(diǎn)DE或CE上,也不能構(gòu)成平行四邊形.
∴只有當(dāng)P點(diǎn)在BF上,Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,
∴以A,C,P,Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA,
∵點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,
解得:t=$\frac{4}{3}$,
∴以A,C,P,Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),t=$\frac{4}{3}$秒;
②由①得,PC=QA時(shí),以A,C,P,Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,
設(shè)運(yùn)動(dòng)時(shí)間為y秒,
則yv1=12-yv2,
解得,y=$\frac{12}{{v}_{1}+{v}_{2}}$,
∴a=$\frac{12}{{v}_{1}+{v}_{2}}$×v1,b=$\frac{12}{{v}_{1}+{v}_{2}}$×v2,
∴$\frac{a}$=$\frac{{v}_{1}}{{v}_{2}}$.

點(diǎn)評(píng) 本題考查的是菱形的判定、平行四邊形的性質(zhì)和判定,掌握平行四邊形的性質(zhì)定理和判定定理、菱形的判定定理是解題的關(guān)鍵,注意分情況討論思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.線(xiàn)段AB兩端點(diǎn)的坐標(biāo)分別為A(2,4)、B(5,2),若將線(xiàn)段AB平移,使得點(diǎn)A的對(duì)應(yīng)點(diǎn)為C(3,-2),則平移后點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(6,-4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列事件中,是不確定事件的是( 。
A.同位角相等,兩條直線(xiàn)平行B.平行于同一條直線(xiàn)的兩條直線(xiàn)平行
C.三條線(xiàn)段可以組成一個(gè)三角形D.對(duì)頂角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知△ABC內(nèi)接于⊙O,BC為直徑,動(dòng)點(diǎn)D在⊙O上(與點(diǎn)A、B不重合),點(diǎn)E在弦BD上,直線(xiàn)AE交直徑BC于點(diǎn)F,且∠AEB=∠BAD.
(1)如圖1,求證:AF⊥BC;
(2)如圖2,連接CD,當(dāng)點(diǎn)D、A位于直徑BC的兩側(cè)時(shí),若∠CAD+∠CAE=∠ACB,求證:BF=CD+CF;
(3)如圖3,在(2)的條件下,連接DF,設(shè)AD、BC相交于點(diǎn)G,若sin∠CAD=$\frac{1}{4}$,F(xiàn)G=$\frac{5}{3}$,求線(xiàn)段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,等腰直角△POA的直角頂點(diǎn)P在反比例函數(shù)$y=\frac{4}{x}$(x>0)的圖象上,A點(diǎn)在x軸正半軸上,求A點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.點(diǎn)M(4-2a,a+5)在第二象限,求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,在平面直角坐標(biāo)系中,已知A(1,0),D(3,0),△ABC與△DEF位似,原點(diǎn)O是位似中心.若AB=1.5,則DE=4.5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.點(diǎn)A(3,5)、B(-3,m)在反比例函數(shù)y=kx-1上,則m=-5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在直角坐標(biāo)平面內(nèi),Rt△AOB中,點(diǎn)A(1,0),OB=2,將△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后與△ACD重合,點(diǎn)O、B分別與點(diǎn)C、D對(duì)應(yīng),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案