【題目】如圖,直線的解析表達式為,且與x軸交于點D,直線經(jīng)過點A,點B,直線,交于點C.
(1)求直線的解析表達式;
(2)求的面積;
(3)在直線上存在異于點C的另一點P,使得的面積等于面積,請直接寫出點P的坐標(biāo).
【答案】(1);(2);(3).
【解析】
(1)直接利用待定系數(shù)法求解即可;
(2)先根據(jù)直線的解析表達式求出點D的坐標(biāo),再根據(jù)直線,的解析表達式可求出點C的坐標(biāo),然后利用三角形的面積公式即可得;
(3)根據(jù)“等底的兩個三角形的面積相等,則其等底上的高必相等”可知點P的縱坐標(biāo),再根據(jù)直線的解析表達式即可求出點P的橫坐標(biāo),由此即可得出答案.
(1)由圖可知,直線經(jīng)過點
設(shè)直線的解析表達式為
將點代入得
解得
則直線的解析表達式為;
(2)對于
當(dāng)時,,解得
則點D的坐標(biāo)為
聯(lián)立,解得
則點C的坐標(biāo)為
點C到x軸的距離為3,即在中,AD邊上的高為3
的面積為;
(3)由題意,要使面積等于面積,則點P到x軸的距離等于點C到x軸的距離,即為3
,且點P異于點C
點P的縱坐標(biāo)為3
又點P在直線上
令,則,解得
故點P的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如點M、N把線段AB分割成AM、MN、BN,若以AM、MN、BN,為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股分割點.
(1)如圖2,已知點C、D是線段AB的勾股分割點,若AC=3,DB=4,求CD的長;
(2)如圖3,在正方形ABCD中,∠MAM=45°,角的兩邊AM、AN分別交BD于E、F(不與端點重合),求證:E、F是BD的勾股分割點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019女排世界杯于9月14月至29日在日本舉行,賽制為單循環(huán)比賽(即每兩個隊之間比賽一場),一共比賽66場,中國女排以全勝成績衛(wèi)冕世界杯冠軍,為國慶70周年獻上大禮,則中國隊在本屆世界杯比賽中連勝( )
A.10場B.11場C.12場D.13場
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點A,與軸交于點B,拋物線經(jīng)過原點和點C(4,0),頂點D在直線AB上。
(1)求這個拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使得以P、C、D為頂點的三角形與△ACD相似。若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)點Q是軸上方的拋物線上的一個動點,若,⊙M經(jīng)過點O,C,Q,求過C點且與⊙M相切的直線解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,對于任意的三個點A、B、C,給出如下定義:若矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的“三點矩形”.在點A,B,C的所有“三點矩形”中,若存在面積最小的矩形,則稱該矩形為點A,B,C的“迷你三點矩形”.
如圖1,矩形DEFG,矩形IJCH都是點A,B,C的“三點矩形”,矩形IJCH是點A,B,C的“迷你三點矩形”.
如圖2,已知M(4,1),N(-2,3),點P(m,n).
(1)①若m=1,n=4,則點M,N,P的“迷你三點矩形”的周長為 ,面積為 ;
②若m=1,點M,N,P的“迷你三點矩形”的面積為24,求n的值;
(2)若點P在直線y=-2x+4上.當(dāng)點M,N,P的“迷你三點矩形”為正方形時,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)求證:∠ABE=∠ACD;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx的圖象過點 (2,0),(-1,6).
(1)求二次函數(shù)的關(guān)系式;
(2)寫出它的對稱軸和頂點坐標(biāo);
(3)請說明x在什么范圍內(nèi)取值時,函數(shù)值y<0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列問題:
(1)從中2張卡片,使這2張卡片上數(shù)字的乘積最大,如何抽取,最大值是多少?
(2)從中抽取2張卡片,使這兩張卡片數(shù)相除的商最小,如何抽取,最小值是多少?
(3)從中取出4張卡片,用學(xué)過的運算方法,使結(jié)果為24.寫出運算式子.(要寫出兩種運算式).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com