【題目】閱讀材料1:
對于兩個正實數(shù),由于,所以,即,所以得到,并且當(dāng)時,
閱讀材料2:
若,則 ,因為,,所以由閱讀材料1可得:,即的最小值是2,只有時,即=1時取得最小值.
根據(jù)以上閱讀材料,請回答以下問題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當(dāng)= 時,有最小值,最小值為 (直接寫出答案).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用個相同的小長方形與個小正方形鑲嵌而成的正方形圖案,已知該圖案的面積為,小正方形的面積為,若用表示小長方形的兩邊長() ,請觀察圖案,指出以下關(guān)系式中,不正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于多項式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當(dāng)c=9時,b= ;當(dāng)b=3時,c= ;
②若多項式Bx2dxc與A有公因式,求d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題.
材料:為解方程x4-x2-6=0,可將方程變形為(x2)2-x2-6=0,然后設(shè)x2=y(tǒng),則(x2)2=y(tǒng)2,原方程化為y2-y-6=0①,
解得y1=-2,y2=3.
當(dāng)y1=-2時,x2=-2無意義,舍去;當(dāng)y2=3時,x2=3,解得x=±.
所以,原方程的解為x1=,x2=-.
問題:
(1)在由原方程得到方程①的過程中,利用 法達到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想;
(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無限循環(huán)小數(shù),事實上,所有的有理數(shù)都可以化為分數(shù)形式(整數(shù)可看作分母為1的分數(shù)),那么無限循環(huán)小數(shù)如何表示為分數(shù)形式呢?請看以下示例:
例:將化為分數(shù)形式
由于=0.777…,設(shè)x=0.777…①
則10x=7.777…②
②﹣①得9x=7,解得x=,于是得=.
同理可得=,=1+=1+,
根據(jù)以上閱讀,回答下列問題:(以下計算結(jié)果均用最簡分數(shù)表示)
(基礎(chǔ)訓(xùn)練)
(1)= ,= ;
(2)將化為分數(shù)形式,寫出推導(dǎo)過程;
(能力提升)
(3)= ,= ;
(注:=0.315315…,=2.01818…)
(探索發(fā)現(xiàn))
(4)①試比較與1的大小: 1(填“>”、“<”或“=”)
②若已知=,則= .
(注:=0.285714285714…)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大的正方形內(nèi),若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積B.最大正方形的面積
C.較小兩個正方形重疊部分的面積D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,是的中點,,分別是的三等分點,,分別交于,兩點,則等于( )
A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD的對角線AC,BD相交于點O,給出下列4個條件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC.從中任取兩個條件,能推出四邊形ABCD是平行四邊形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,四邊形BDEF是菱形,其中線段DF的長與DB相等,將菱形BDEF繞點B按順時針方向旋轉(zhuǎn),甲、乙兩位同學(xué)發(fā)現(xiàn)在此旋轉(zhuǎn)過程中,有如下結(jié)論.
甲:線段AF與線段CD的長度總相等;
乙:直線AF和直線CD所夾的銳角的度數(shù)不變.
那么,你認為( )
A. 甲、乙都對 B. 乙對甲不對 C. 甲對乙不對 D. 甲、乙都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com