【題目】如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1

1)求m、n的值;

2)求直線AC的解析式.

【答案】1m=-1,n=-1;(2y=-x

【解析】

1)由直線與雙曲線相交于A(1,a)B兩點可得B點橫坐標為1,點C的坐標為(1,0),再根據(jù)△AOC的面積為1可求得點A的坐標,從而求得結(jié)果;

2)設(shè)直線AC的解析式為ykxb,由圖象過點A(-1,1)、C1,0)根據(jù)待定系數(shù)法即可求的結(jié)果.

1直線與雙曲線相交于A(1,a)、B兩點,

∴B點橫坐標為1,即C(1,0)

∵△AOC的面積為1,

∴A(1,1)

A(11)代入,可得m=-1,n=-1;

2)設(shè)直線AC的解析式為ykxb

∵ykxb經(jīng)過點A(-1,1)、C10

解得k=-,b

直線AC的解析式為y=-x

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點A1,0),B4,0)與軸交于點C

1)求拋物線的解析式;

2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.

3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB12cm,C是線段AB上一定點,且AC3cm,點D是線段BC上的一個動點,設(shè)CDxcm,以C為中心順時針旋轉(zhuǎn)線段ACD為中心,逆時針旋轉(zhuǎn)線段DB,使AB兩點能重合于點E

1)當C、D、E三點能構(gòu)成三角形時,求x的取值范圍;

2)當x為何值時,CDE是直角三角形?

3)記CDE的面積為Scm2,試求出Sx的函數(shù)表達式;若CDE的面積為cm2,試確定此時點D的位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明利用課余時間回收廢品,將賣得的錢去購買5本大小不同的兩種筆記本,要求共花錢不超過28元,且購買的筆記本的總頁數(shù)不低于340頁,兩種筆記本的價格和頁數(shù)如下表.為了節(jié)約資金,小明應(yīng)選擇哪一種購買方案?請說明理由.

大筆記本

小筆記本

價格(元/本)

6

5

頁數(shù)(頁/本)

100

60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,ABC的平分線交AD于點F.若BF=12,AB=10,則AE的長為( 。

A. 10 B. 12 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個不透明口袋,裝有分別標有數(shù)字1,2,3,44個小球(小球除數(shù)字不同外,其余都相同),另有3張背面完全一樣、正面分別寫有數(shù)字1,23的卡片.小敏從口袋中任意摸出一個小球,小穎從這3張背面朝上的卡片中任意摸出一張,然后計算小球和卡片上的兩個數(shù)的積.

1)請你用列表或畫樹狀圖的方法,求摸出的這兩個數(shù)的積為6的概率;

2)小敏和小穎做游戲,她們約定:若這兩個數(shù)的積為奇數(shù),小敏贏;否則,小穎贏.你認為該游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張正面分別標有數(shù)字1,2,3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.

1)隨機抽取一張卡片,則抽到數(shù)字“2”的概率是___________;

2)從四張卡片中隨機抽取2張卡片,請用列表或畫樹狀圖的方法求抽到數(shù)字和為5”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點、在直線上,且,點,且,以為直徑在的左側(cè)作半圓,,且.

1)若半圓上有一點,則的最大值為________

2)向右沿直線平移得到;

①如圖,若截半圓的長為,求的度數(shù);

②當半圓的邊相切時,求平移距離.

查看答案和解析>>

同步練習(xí)冊答案